Global Water Futures 2021 Operations Team Meeting - Project Reporting Template

Instructions: All GWF projects are asked to provide a summary update on their activities and accomplishments in preparation for the upcoming Operations Team meeting. Please submit these by email to chris.debeer@usask.ca by no later than December 2. These will be used to help guide discussions and breakout synthesis activities and will be made generally accessible on our website in advance of the meeting.

Project Name: Core - Water Resources Management Modelling

Our major accomplishments to date are:

 Mizuroute vector-based routing model complete with reservoirs, withdrawals and lakes (S Gharai).

Publication: https://doi.org/10.1029/2020MS002434

- Adoption of Mizuroute model into the Community Earth System Model community of practice repository (https://github.com/ESCOMP/mizuRoute)
- Development of generic reservoir/irrigation models for hydrologic models (A Tefs, F Yassin)
 Publications: https://doi.org/10.5194/hess-2019-7
- Renaturalized scenarios produced in HYPE and MESH for IWRM
- IWRM scenarios using economic and agricultural scenarios (developed by Pat Gober and Hayley Carlson) complete (L Eamen)
- •
- •

Our current activities are:

- Integration of HYPE and mizuroute (A Tefs, S Gharai)
- Integration of MESH and mizuroute (F Yassin, S Gharai)
- Finalizing climate change scenarios from HYPE and MESH (A Tefs, F Yassin)
- Integration of HYPE and MESH scenarios into IWRM (L Eamen)
- Climate change + renaturalization scenarios in IWRM (L Eamen)
- Manuscript for MESH vector based routing
- Commentary paper for IWRM models vs. other model types to look at scenarios
- Ice-affected rating curve development for IWRM framework
- Integration of Manitoba and Saskatchewan river IWRM models.
- •
- •

The main accomplishments expected by the end of the project are:

- Integration of lakes, reservoirs, irrigation and withdrawals in land surface and hydrologic models
- Comparison of technologies for modelling water resource management:
 - Network routing products, hydrologic models and IWRM models
- Production of climate change and renaturalized scenarios of hydrology to assess with/without regulation and climate change impacts
- Adaptation of IWRM platform specifically for cold regions (i.e., ice affected stage-discharge)
- Visualization of water resource management scenarios/outputs

Here is a key visual from the project (figure, photo, table, graph, etc.)

Water Resources Management Modelling

Primary Goals

- (i) Application of existing integrated water management modelling frameworks
- (ii) Integrate water management rules in land & hydrology models.

WRMM Work Packages focus on the following initiatives:

- 1. Embed lakes & reservoirs into land models
- 2. Include water management in hydrologic models
- 3. Integrated WRMM and decision scenarios
- 4. Adapt WRMM for cold regions

Model agnostic Continental-scale, Computationally efficient FAIR practices Bench marked

Achievements

- (i) Global network routing product (MIZUROUTE)
- (ii) Two code frameworks to account for reservoirs in continental scale hydrologic models (DTZR, RAT)
- (iii) WRMM for Nelson River basin with stress test scenarios for agricultural withdrawals and regulation
- (iv) Seasonal ice-affected rating curves for WRMM

T. Stadnyk, tricia.Stadnyk@ucalgary.ca