Improving estimates of phosphorus loads from tile-drained landscapes using Kriging techniques

Mazda Kompanizare, Merrin Macrae, Janina Plach, Ryan Carlow, Rich Brunke

Biogeochemistry Research Group

UNIVERSITY OF WATERLOO **BIOGEOCHEMISTRY LAB**

- Department of Geography and Environmental management,

Ministry of Agriculture, Food and Rural Affairs

Introduction

Excessive phosphorus from agricultural lands to downstream water bodies and lakes has led to the proliferation of algal blooms in the Great Lakes region.

- transport of

Introduction

Efficient modelling and management of phosphorus transport needs accurate assessment of the amount and timing of phosphorus loads in surface runoff and subsurface tile drainage.

Objectives

Use novel interpolation technique to more precisely estimate dissolved and total phosphorus concentrations and loads in continuous time-series data for surface runoff and tile drainage from farmlands

Assess total and temporal uncertainties in the estimated phosphorus loads

Previous Work on Interpolation

Period/Time Weighted Means(PWMC/TWMC) (Preston et al., 1989) Flow weighted Means (FWMC) Interpolation of flow and/or concentrations (Phillips et al., 1999; Williams et al., 2015) Regression between flow and concentrations (Walker, 1999; Hirsch, 2014) • Composite method (Huntington et al., 1994; Appling et al., 2015) - Regression (Deterministic) - Interpolation (Stochastic)

\bigcirc D J **0**0 Π S Ω S 90 90

Log-Log linear relationships between flow and SRP

than 0.005

In 50% of cases at our study sites, the p-values are less

12-Oct-2012

13-May-2014

Time

13-Dec-2015

14-Jul-2017

SRP mass (mg) [Mean±STD] SRP mass (mg) [Mean] Flow rate*20(L/s) SRP concentration ($\mu g/L$) [mean] SRP concentration ($\mu g/L$) [mean+STD]

Agricultural Water Future

SRP concentration ($\mu g/L$) [mean+STD]

Comparison of Concentration Data Estimated Using Kriging and Linear Interpolation

FWMC

Load

Conclusion

• The Kriging method can help us to more precisely interpolate phosphorus loads and the uncertainties associated with these estimates when missing data are gap filled to generate load estimates

- TP (FWMC = 0.28 + 0.18) - 0.13

• The uncertainties in estimates depend on the degree of fit in the regression (linear Log-Log) function between P concentrations and flows. [For example, p-value<0.001 resulted in ~30% uncertainty (standard deviation)].

• Between 2011-2017, across our sites: - SRP (FWMC=0.11 $\begin{bmatrix} +0.07 \\ -0.06 \end{bmatrix}$ mg/L, Load= 0.62 $\begin{bmatrix} +0.41 \\ -0.34 \end{bmatrix}$ kg/ha), mg/L, Load= 2.1 $\begin{vmatrix} +1.30 \\ -1.07 \end{vmatrix}$ kg/ha).

Acknowledgements

Funding: Ontario Ministry of Agriculture, Food and Rural Affairs, Global Water Futures, LICO, AAC Field Assistance: C. Van Esbroeck, T. Lozier, K. McKague, L. Taylor

UNIVERSITY OF WATERLOO **BIOGEOCHEMISTRY LAB**

Ministry of Agriculture, Food and Rural Affairs