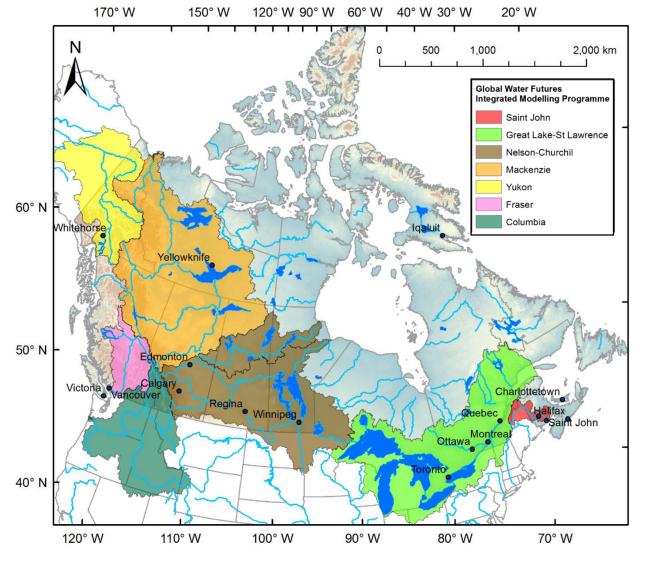


Integrated Modelling for Prediction and Management of Change in Canada's Major River Basins (IMPC)

Global Water Futures – Inception Meeting Saman Razavi, January 22, 2018

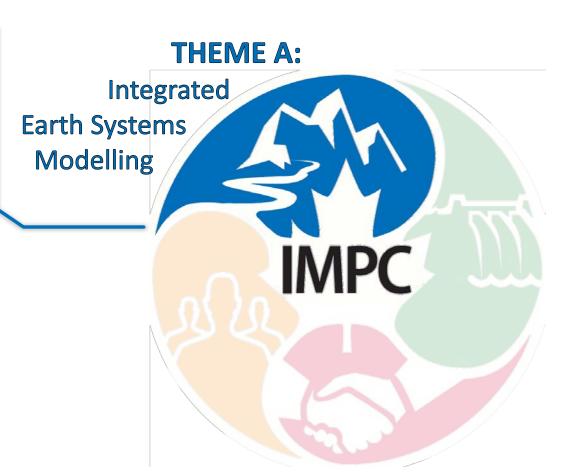


- (I) Failure to link important features of climate, hydrology, water quality, ecosystem, and water management systems. Important positive and negative feedback loops, tipping points, and dynamical behaviour of these human-natural systems are not included in current modelling schemes.
- (II) Fragmentation in operations, management, and governance of Canadian water resources systems leads to piecemeal science, policy, and modelling. Our research transcends artificial boundaries (international, provincial, and local) and provides information at scales appropriate for decision-making.
- (III) Current practice assumes stationarity, the idea that the past empirical record is a basis for understanding the present and future conditions. We now know that **stationarity is dead** and that our environmental systems are in the throes of unprecedented climate and environment change.

"This program aims to develop a pan-Canadian integrated modelling platform to diagnose, simulate, and predict interactions amongst natural and human-driven waterresource components of the changing Earth and environmental systems, and to deliver optimal decision making tools and solutions for uncertain future water resources, considering the range of stakeholder needs in Canada's major river basins."

A1: Atmospheric Modelling

A2: Hydrologic Modelling


A3: Water Quality Modelling

A4: River Ice Modelling

A5: Model Intercomparison

A6: Floodplain Mapping

A7: Uncertainty Characterization

A1: Atmospheric Modelling

A2: Hydrologic Modelling

A3: Water Quality Modelling

A4: River Ice Modelling

A5: Model Intercomparison

A6: Floodplain Mapping

A7: Uncertainty Characterization

THEME A:

Integrated

Earth Systems

Modelling

B1: Basin-wide Water Resource Modelling

B2: Environmental Demands

B3: Hydro-economic Modelling

THEME B:

Water Management
Modelling, Coupling
Human-driven and
Natural Systems

A1: Atmospheric Modelling

A2: Hydrologic Modelling

A3: Water Quality Modelling

A4: River Ice Modelling

A5: Model Intercomparison

A6: Floodplain Mapping

A7: Uncertainty Characterization

THEME A:

IMPC

Integrated

Earth Systems

Modelling

B1: Basin-wide Water Resource Modelling

B2: Environmental Demands

B3: Hydro-economic Modelling

THEME B:

Water Management
Modelling, Coupling
Human-driven and
Natural Systems

THEME C:

Decision Making under Uncertainty and Non-stationarity

C1: Future Scenario Generation

C2: Optimization and Multi-Criteria Decision Analysis

A1: Atmospheric Modelling

A2: Hydrologic Modelling

A3: Water Quality Modelling

A4: River Ice Modelling

A5: Model Intercomparison

A6: Floodplain Mapping

A7: Uncertainty Characterization

THEME A:

IMPC

Integrated

Earth Systems

Modelling

B1: Basin-wide Water Resource Modelling

B2: Environmental Demands

B3: Hydro-economic Modelling

THEME B:

Water Management
Modelling, Coupling
Human-driven and
Natural Systems

THEME C:

Decision Making under Uncertainty and Non-stationarity

THEME D:

User Engagement

and Knowledge Mobilization

D1: Outreach and User Engagement

D2: Decision Support Systems

C1: Future Scenario Generation

C2: Optimization and Multi-Criteria Decision Analysis

A1: Atmospheric Modelling

A2: Hydrologic Modelling

A3: Water Quality Modelling

A4: River Ice Modelling

A5: Model Intercomparison

A6: Floodplain Mapping

A7: Uncertainty Characterization

THEME A:

Integrated

Earth Systems

Modelling

B1: Basin-wide Water Resource Modelling

B2: Environmental Demands

B3: Hydro-economic Modelling

THEME B:

Water Management
Modelling, Coupling
Human-driven and
Natural Systems

THEME C:

Decision Making under Uncertainty and Non-stationarity

THEME D:

Úser Engagement

and Knowledge Mobilization

D1: Outreach and User Engagement

D2: Decision Support Systems

C1: Future Scenario Generation

C2: Optimization and Multi-Criteria Decision Analysis

Investigators

Dr. Saman RazaviPrimary Investigator
University of Saskatchewan

Dr. Karl-Erich LindenschmidtUniversity of Saskatchewan

Dr. John PomeroyCanadian
Research Chair

Dr. Amin ElsehorbagyUniversity of
Saskatchewan

Dr. Patricia GoberUniversity of
Saskatchewan

Dr. Tricia StadnykUniversity of
Manitoba

Dr. Tim JardineUniversity of
Saskatchewan

Dr. Yanping LiUniversity of
Saskatchewan

Dr. Al Pietroniro Environment Canada

Dr. Brian Tolson University of Waterloo

Dr. Paulin Coulibaly McMaster's University

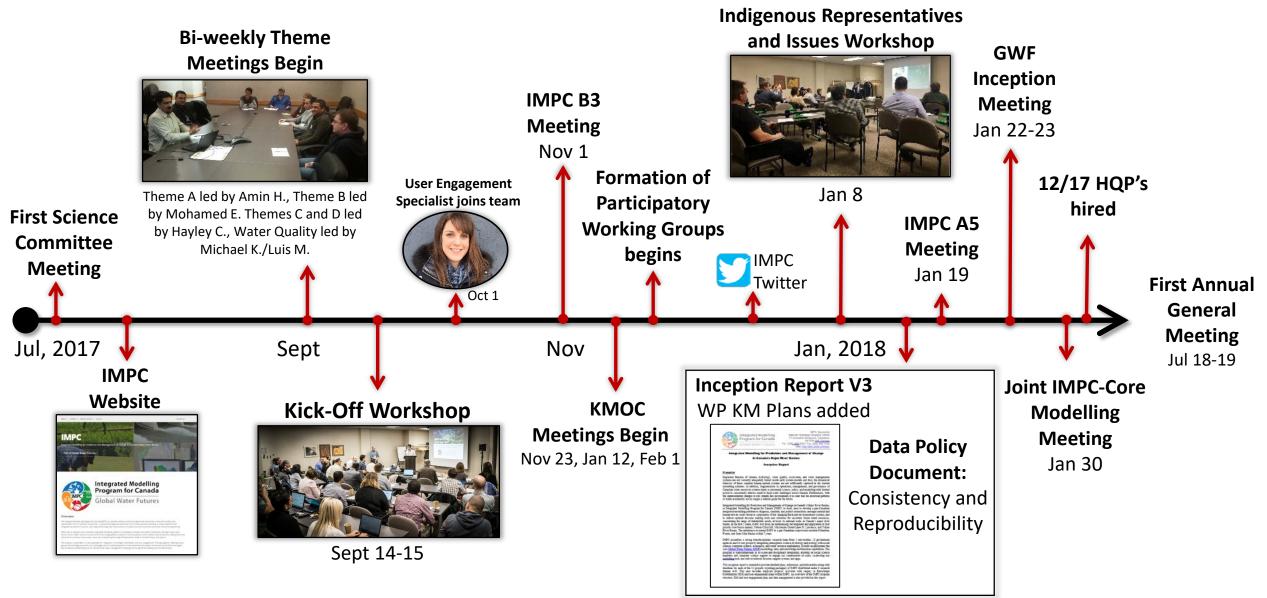
Dr. Howard WheaterUniversity of
Saskatchewan

Dr. Carl GutwinUniversity of
Saskatchewan

Dr. Graham StrickertUniversity of
Saskatchewan

Dr. Roy Brouwer University of Waterloo

Partnership Wheel


18 Current Partners

- 4 Federal Agencies
- 3 Provincial Governments
- 3 Transboundary Agencies
- 3 Municipalities
- 3 Indigenous Communities
- 1 Industry
- 1 NGO

We're working with our KM advisory committee to fill the wheel!

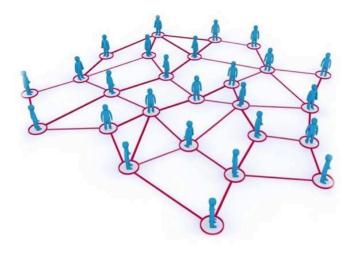
Progress To Date

Knowledge Transfer

IMPC Website

Events Calendar

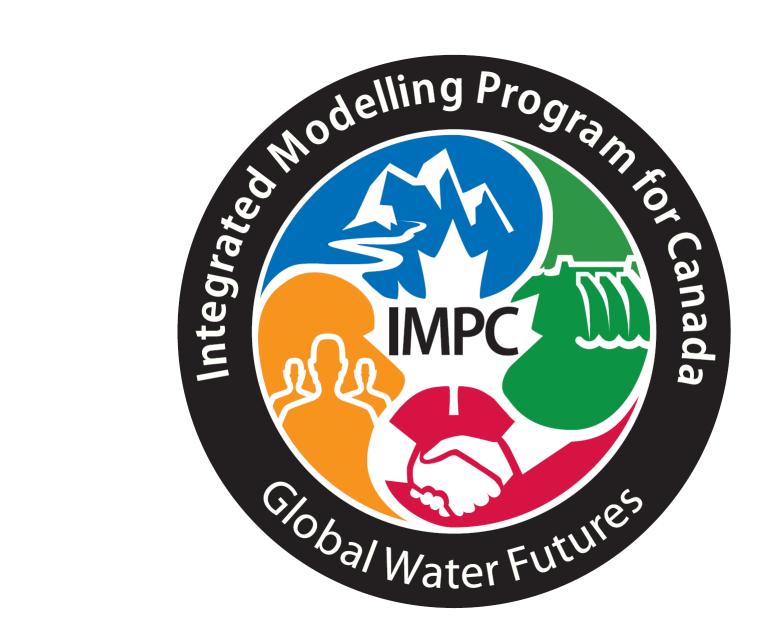
Social Media


Outreach Materials

Knowledge Exchange and Co-Creation

At the Program level:

Knowledge Mobilization Oversight Committee



Social Science Metrics for Evaluation

At the Work Package level:

- Participatory Working Groups
- Working Package KM Plans

THEME A: Integrated Earth Systems Modelling

A1: Atmospheric Modelling

High resolution atmospheric modelling to represent scenarios of change and land-atmosphere feedbacks

A2: Hydrologic Modelling

Improving hydrologic process representations for cold regions to better simulate snow and glacier and accommodate hyper-resolution modelling

A3: Water Quality Modelling

Integrating land-surface and in-stream water quality processes into hydrologic modelling

A4: River Ice Modelling

Integrating river ice processes into hydrological modelling for operation and flood forecasting

A5: Model Intercomparison

Hydrologic model inter-comparison and multi-model analysis for improved prediction

A6: Floodplain Mapping

Improving floodplain mapping in flood sensitive areas

A7: Characterization and Communication of uncertainty

THEME B: Water Management Modelling and Coupling Human-driven and Natural Systems

B1: Basin-Wide Water Resources Modelling

Developing a water resources model to simulate different operational policies of existing and future water infrastructure

Developing a performance model for aquatic ecosystems based on hydroecologic metrics and environmental demands

B3: Hydro-economic Modelling

Developing an integrated hydro-economic model to assess the direct and indirect impacts of policy decisions based on socio-economic water valuation studies

THEME C: Decision Making under Uncertainty and Non-stationarity

C1: Future scenario generation

Future scenario generation for river-basin scale changes in climate, land surface, and water resources

C2: Optimization and Multi-Criteria Decision Analysis

Optimization and multi-criteria decision analysis to optimize policy and decision scenarios and evaluate trade-offs between different competing objectives

THEME D: User Engagement, Knowledge Mobilization, and Decision Support Systems

D1: Outreach and user engagement

Outreach and user engagement to inform model development and output design, inclusion of user community representative on modelling team, and iterative, two-way sharing of information between scientists and users

D2: Decision support systems

Developing decision support systems with advanced visualization tools and expert systems built on research in Themes A-C and linked to the programme data inventories

IMPC Kick-off Workshop

The aim of the workshop was to plan for large-scale modelling activities for forecasting, prediction, and water resources management and decision support over the next three years, until August 2020.

More than 70 people from academic, regulatory, and industrial sectors attended the workshop in-person or online to present and discuss their objectives, plans, and perspectives for IMPC. These included:

- Environment and Climate Change Canada,
- Agriculture and Agri-Food Canada,
- Prairie Provinces Water Board,
- Saskatchewan Water Security Agency,
- Alberta Environment and Parks,
- City of Calgary,
- Manitoba Infrastructure and Transportation,
- Manitoba Hydro,
- Yukon Department of Environment, and
- EPCOR Water.

