

Winter Soil Processes in Transition

Principal Investigator: Fereidoun Rezanezhad (UW) (Soil Hydro(geo)chemistry)

Co-Investigators: Laura Hug (UW) (<u>Environmental Microbiology</u>) Philippe Van Cappellen (UW) (<u>Environmental Biogeochemistry</u>) David Rudolph (UW) (<u>Groundwater Hydrogeology</u>) Scott Smith (WLU) (<u>Environmental Chemistry</u>)

Collaborators:Christina Smeaton (UW) (Environmental Biogeochemistry)
Colin McCarter (UW) (Wetland Hydro(geo)chemistry)
Chris Parsons (UW) (Environmental Biogeochemistry)

Knowledge Mobilization Collaborator: Kara Hearne

GWF Pillar 3 Collaborators: Nandita Basu (University of Waterloo); Sean Carey (McMaster University); John Pomeroy, Angela Bedard-Haughn and Cherie Westbrook (University of Saskatchewan); William Quinton and Jennifer Baltzer (Wilfrid Laurier University); Ronald Stewart (University of Manitoba); Merrin Macrae (University of Waterloo)

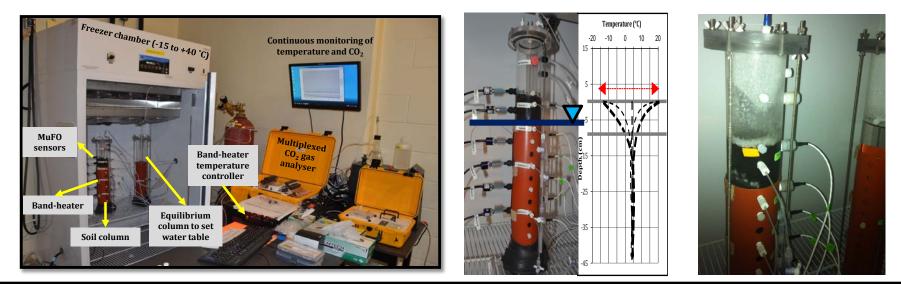
Colder Soils in a Warming World?

Climate Warming expose soils to:

→ <u>Colder soil temperatures</u> due to loss of the insulating snowpack
→ Influence on soil moisture content

→ More frequent **Freeze-Thaw Cycles** over the winter season

Importance of **Winter Soil Processes** on the export of C and nutrients (N, P, S, Fe) to **Groundwater**, **Surface Water** and **Lakes**

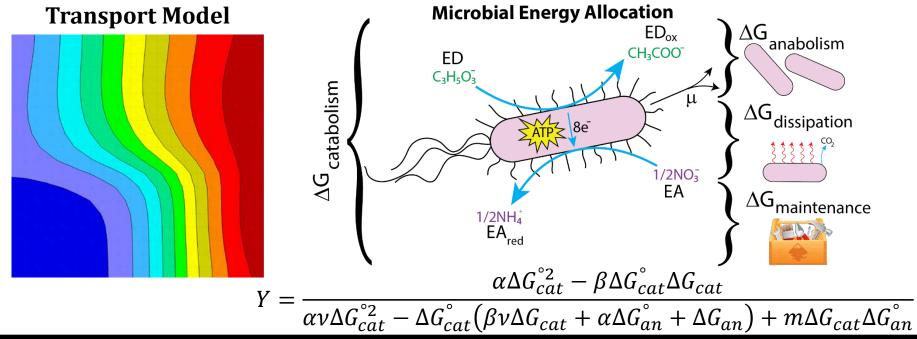

Short-Term Objectives (2018-2020)

Objective 1 (Flow-Through Reactor and Leaching <u>Experiments</u>)

Establish the dynamic temperature dependencies of carbon and nutrient mineralization rates, and the associated effects on winter microbial soil communities

Objective 2 (Soil Column <u>Experiments</u>)

Assess the mechanisms of soil biogeochemical processes under variable FTC and soil moisture content conditions, and determine the effects on C and nutrient cycling under variable snow cover and winter conditions

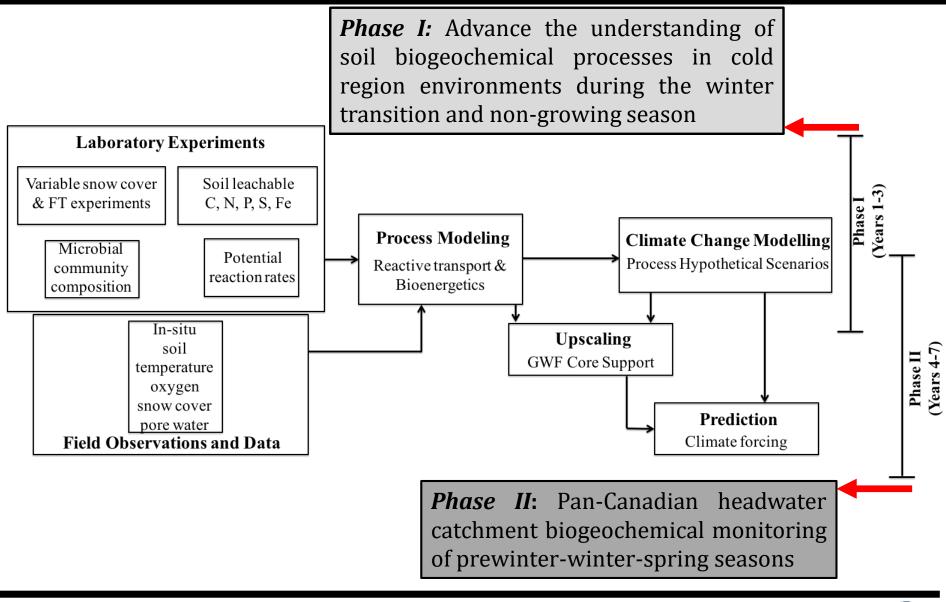

Short-Term Objectives (2018-2020)

Objective 3 (Biogeochemical Modeling)

Develop a bioenergetic model for simulating microbial reaction systems under variable geochemical winter conditions

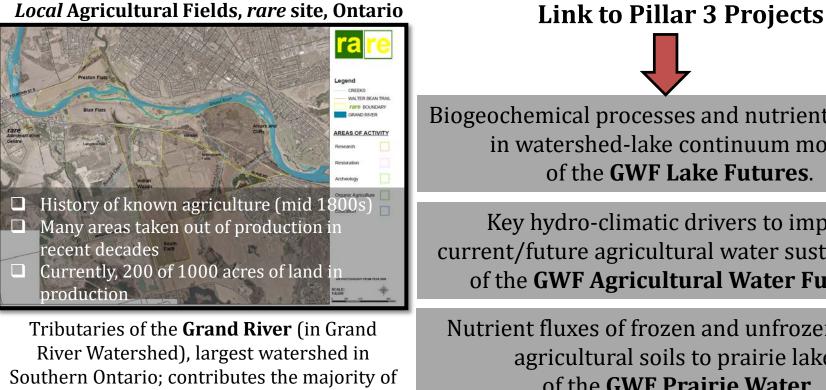
Objective 4 (Numerical <u>Modeling</u>)

Develop a reactive transport model to simulate the biogeochemical transformations of carbon and nutrients in winter soils


Work Plan and Team

Objectives	HQP	Years	Team
Objective 1 (Flow-Through Reactor and Leaching Experiments)	PhD#1 UG Thesis #1,2 UG Coop #1 (<u>L. Norwood</u>)	2018 2019 2020	Hug, Smith, Parsons , Rezanezhad
Objective 2 (Soil Column Experiments)	PhD#2 (<u>K. Krogstad)</u> UG Thesis #3,4 UG Coop #2,3	2018 2019 2020	Rezanezhad, McCarter Rudolph, Van Cappellen
Objective 3 (Biogeochemical Modeling)	PDF#1 PhD#1	2019 2020	Van Cappellen, Smeaton Hug, Smith
Objective 4 (Numerical Modeling)	PDF#1 PhD#2	2019 2020	Van Cappellen, Rudolph, Rezanezhad

The team will be collaborating with several <u>GWF Pillar 3 projects</u> and <u>GWF Core Supporting Team (Technician, Data Management,</u> <u>Modeling and Knowledge Mobilization</u>)



Deliverables and Timelines

Field Sites

external nutrient loads to the Lake Erie

Biogeochemical processes and nutrient modeling in watershed-lake continuum models

Key hydro-climatic drivers to improve current/future agricultural water sustainability of the GWF Agricultural Water Futures.

Nutrient fluxes of frozen and unfrozen prairie agricultural soils to prairie lakes of the GWF Prairie Water.

In Year 3 and Phase II (Years 4-7), the team will acquire soils from the field sites of the **GWF** Northern Water Futures, Mountain Water Futures and Sibbald Research Wetlands

Characterization of near 0°C winter precipitation scenarios of Pillar 3 GWF Climate-**Related Precipitation Extremes project.**

