

Sensors and Sensing Systems for Water Quality Monitoring

Ravi Selvaganapathy, Dawn Martin-Hill, Chang-qing Xu, Jamal Deen, Charles deLannoy, Emil Sekerenski, Peter Kruse, Juewen Liu, Carolyn Ren, Phillip van Cappellen, James McGreer, Scott Smith, Karsten Liber, Wahid Khan

KEY OBJECTIVES:

- One of GWF key objectives integrate water quantity and quality data in real-time, make it readily available to users wirelessly.
- Critical need to understand the effect of human activities on the ecosystem and water.
- This involves the use of sensors and sensing systems that can be deployed in the environment to monitor contaminants and their variation over the short and long time scales.

OVERARCHING GOALS:

Free chlorine sensor

- 1) Development of *low-cost sensing systems* for long term monitoring of water quality.
- Development of specific low cost sensors and integrate them with the sensing system.

Low Cost Sensing Systems

Commercial, custom built, software-based

New Sensor Designs

Biofouling prevention

Surface Bacterial biofilm 20 μm

Aptamer for heavy metals

> Analytes: heavy metals, oxidants, nutrients, pathogens

APPLICATIONS:

- > Major challenge in the risk assessment of contaminated waters, whether from agricultural or municipal operations, is the fluctuating nature of contaminant concentrations in those waters.
- > Environmental and agricultural perspectives: nutrient loads and eutrophication of waterbodies remain serious concerns; can result in cyanobacterial blooms with toxic consequences.
- > Community and drinking water: measurement level of free chlorine, dissolved oxygen and pathogens present remains an important consideration.

Environmental and Agricultural

- (Left) Fiber optic sensor for oxygen monitoring installed in soil, agricultural field in Southern Ontario
- (Right) Libelium sensor deployment in lake downstream of mining operation to assess risk of metals on water and invertebrate, in Saskatchewan

Community and Drinking Water

- (Below) Well water sampling at Six Nations community in Ontario, to measure coliform concentration and physical/chemical water parameters
- Data will be released to community members and compared to historical records; many indigenous communities suffer under long-term water advisories or have a deficit of holistic strategies for water monitoring

UN SUSTAINABLE DEVELOPMENT GOAL:

- Support and strengthen the participation of local communities in improving water and sanitation management
- Achieve universal, equitable access to safe, affordable drinking water for all
- protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes

CONCLUDING REMARKS:

- > Long term field deployment of newly developed sensors and systems to determine lifetime, performance variations, and maintenance protocols.
- Will expand deployment to many more end user groups.
- Optimization and field validation of sensors in Northern Saskatchewan sites and Far North (Igaluit) community.