
Created by Peter Downing – Media Production – Teaching and Learning © 2015

The Core Computer Science Team has
been working on migrating a GUI based
legacy system called CRHM (Cold Region
Hydrological Model) developed in Borland
C++. CRHM has been widely used by
worldwide Government Agencies(22),
Universities (45), and Corporations (20).
The system was initially devised to provide
a framework within which to integrate
numerical algorithms derived from the
observation of a range of hydrological
processes of considerable uncertainty,
based solely on the underlying physical
interactions which control them, in small to
medium-sized catchments. CRHM’s source
code has 73.108 KLOC in 61 source files.
Migration is essential for the system as the
Borland C++ compiler is outdated and
making modifications to CRHM is time
consuming. We are working on producing
the next generation CRHM.

I. Abstract II. Next – GEN CRHM

VIII. Next- GEN CRHM’s Architecture – Current Status XI. Conclusion and Future Work

Acknowledgement

We thank the CRHM developers for explaining CRHM’s
functionality. This work is supported in part by the Canada
First Research Excellence Fund (CFREF) under Global
Water Futures (GWF).

Towards Next-Gen CRHM
Banani Roy, Manishankar Mondal, Hamid Khodabandehloo, Chanchal K. Roy, Kevin A. Schneider

{banani.roy, mshankar.mondal, hak335, chanchal.roy, kevin.schneider}@usask.ca

III. Next-Gen CRHM Development Environment

IX. High-level Control Flow of Next-GEN CRHM

1. Banani Roy, Kevin Schneider, Chanchal Roy,
Rayhan Ferdous and Mahjabin Alam. An Approach
for effectively Understanding a Legacy Software
System for Migration: A Case Study using a Borland
Application. In progress.

2. Rayhan Ferdous, Banani Roy, Chanchal Roy and
Kevin Schneider. ProvMod: A Workflow
Programming Model to Offer Automated
Provenance and Log Analysis. In Proceedings of
International Conference on Web Services (ICWS),
2019. In progress.

List of Publications

X. Observations

V. Next-Gen CRHM Architecture - Long Term

University of Saskatchewan, Canada

IV. Migration Strategies

• Establish Next-Gen Development Environment
• Design new software architecture
• Create Plug-in Architecture
• Develop Workflow Framework with provenance tracking
• Develop Next-Gen GUI for PRJ files and to view T-Charts

• Code Separation: Core and GUI
components.

• Develop a console version of CRHM 2018
that runs in a standard C++ environment.

• Create APIs to access CRHM core data
structures.

• Use the API to populate components for
GUI applications.

• Remove Borland dependencies.
• Minimize MFC dependency.

CRHMmain *crhm_core = CRHMmain::getInstance();

crhm_core_>DoPrjOpen(filename, ApplicationDir);

TStringList* variables = CRHMmain::getInstance()-
>getVariables();

for (int ii = 0; ii < variables->Count; ii++)
{

std::string s = variables->Strings[ii];
CString cvariables(s.c_str());
listbox_variables_all.AddString(cvariables);

}

VI. Automated Testing

• Adding new modules as plugins
• Reducing inter module dependencies
• Connecting Modules in a workflow
• Establishing Workflow Provenance:

• Analyzing complex behavior of workflows
• Identifying similarities among workflows
• Finding the best parameter settings for a

module
• Resource management and tracking

VII. CRHM Migration Accomplishments

• Analyzed different versions of CRHM
• Prototyped Migration of 2012 Version to

modern compiler
• Migrated CRHM 2012 Console version

to Microsoft Visual C++ (MSVC++)
2017

• Prototyped CRHM GUI in MSVC++ 2017
• Created T-charts using observation files in

MSVC++ 2017
• Partially migrated CRHM 2018 version to

MSVC++ 2017 core version.
• Connected CRHM 2018 GUI MVSC++

prototype to partially migrated CRHM
2018 MSVC++ version
• Open and run a project file
• Integrated T-chart ActiveX control to

show simulation results
• Save and Save as functionality
• Build Functionality
• Close project file.

• Integrated migrated CRHM with Google
Test Framework

• Setup a Github repository for version
control

• CRHM code contains many exactly or
nearly similar code fragments. These
similar code fragments can be refactored
for better maintenance and evolution of
CRHM code. We are focusing on
refactoring similar code during migration.

• There are many extra large functions in
the CRHM code. These functions should
ideally be decomposed considering the
Single Responsibility Principle. We will do
this as part of the migration.

The migration is on track according to the
planned schedule. Both development and
testing are being conducted side by side.

While migrating we are also considering the
documentation for the functionality so that
new developers and testers can easily
contribute to CRHM in its maintenance
phase. We are developing tools that will
assist new CRHM developers in
understanding CRHM’s execution processes
[1, 2].

In the future, we will use our CRHM
migration experience for devising a semi-
automatic mechanism for migrating and
renovating similar software systems.

• A modern compiler and libraries
• E.g., MS Visual C++ (VC++) 2017, GCC

• A Distributed Version Control System to
support multi-version experimentation

• E.g., Git
• An Automated testing framework to

support rapid deployment of new features
• E.g., test scripts, Google Test, Microsoft

Coded UI, Microsoft TFS.
• Virtual Containers to support packaging,

deployment & portability
• E.g., Docker – Build, Ship and Run

• We considered three major testing methods
to make sure CRHM is working as expected.
• The first and an essential test for most
software systems is Unit testing. We used
Google test to develop robust and versatile
unit tests.
• System testing is the second type of
testing that we established for CRHM to
ensure that its functionality as a whole is
working properly. Microsoft Coded UI is
used for this testing.
• Finally, we need to make sure that the
results provided by the new application
matches the legacy application. For this
purpose we run test cases on both the old
and the new applications automatically and
compare the results. We consider this
process as one part of user acceptance
testing. To make sure the result is what an
end user wants, one of the professional end
users will confirm the final version before
release.
• We use Microsoft TFS for maintaining test
cases, bug reports and stories of the system.

Global Water Futures
Solutions to Water Threats in an Era of Global Change

	Slide Number 1

