Global Water Futures 2021 Operations Team Meeting – Project Reporting Template

Instructions: All GWF projects are asked to provide a summary update on their activities and accomplishments in preparation for the upcoming Operations Team meeting. **Please submit these by email to <u>chris.debeer@usask.ca</u> by no later than December 2.** These will be used to help guide discussions and breakout synthesis activities and will be made generally accessible on our website in advance of the meeting.

Project	Name:	Mountain Water Futures
Our major accomplishments to date are:		
Surface/Groundwater Interactions		
 Conducted detailed field studies at several alpine catchments in the Canadian Rockies to identify major types of aquifers their roles in sustaining the baseflow of mountain rivers. Developed a conceptual framework of alpine hydrogeology Investigated the importance of spatial distribution of alpine aquifer units and demonstrated the special significance of moraine as a gate keeper of groundwater discharge in this catchment Investigated the influence of surface water – groundwater interaction on the thermal regime of the headwater streams in various alpine environments and evaluated the efficacy of a stream energy balance model in representing the interaction Established new research watersheds established along the Dempster Highway Vegetation and Wetlands Quantified the hydrological connectivity to hillslopes, underlying alluvial aquifers and buried alluvial fans, and their role in runoff generation Utilized Beaver Dam Analogues (stream restoration structures) to enhance stream habitat and support threatened coldwater fish thermally regulating streams. Revealed influence of beaver dam structure on flood attenuation and water storage capacity. Identified rapid shrub expansion in subarctic through repeat LiDAR measurements with field validation. 		
	channed the fold of anticipant (observation and observation and observation) by partitioning in	
subarctic mountainous catchments. Cryosphere		
Cryosph •	New observation measurements Completed mod Rockies. Using decrease in snow in rainfall, ET at predicted a decre streamflow volu increase in rainf Special analysis 2020 melt seaso decrease in the s	ns at Conrad Glacier site in Purcell Mountains for alpine thermal regime lelling of the effect of climate change along with deglaciation on Canadian WRF-PGW for climate change in non-glaciated basins we predict a substantial wfall, sublimation and peak snowpack, advance in melt timing, and an increase nd annual streamflow. Using the same climate forcing for glaciated basins, rease in snowfall, blowing snow sublimation, peak snowpack and annual ume, advance in melt timing, loss of ice and firn melt contributions, and an

Climate

- Development of a climatology of landfalling atmospheric rivers along the BC and southeastern Alaska coast and quantification of their contributions to annual precipitation and streamflow in the region.
- Showed that some locations in the Coast Mountains, such as Terrace, have some of the highest occurrences of temperatures near 0°C in the country and these are often accompanied with precipitation.
- Examined the occurrence of precipitation transition regions in the current and future climate using CONUS I information and found that occurrences and average elevations increase more in interior regions than near the coast under PGW conditions.
- Collected precipitation amount and type information in relation to documented atmospheric rivers in the Nechako watershed during September and October 2021.

Model Development and Testing

- Implementation of the VIC-GL model to the 51,600 km² Stikine Watershed of northwestern BC in addition to two of its primary sub-basins, the Iskut and Tuya river basins.
- Completion of VIC-GL historical simulations for the Tuya and Iskut river basins without glacier dynamics.
- Analyses of model output vs observations trends and variability across the Stikine Watershed.
- Application and development of CHM in Canadian Rockies

Our current activities are:

Surface/Groundwater Interactions

- Conducting a systematic study of permafrost distribution and the critical factors controlling the distribution in the Canadian Rockies.
- Conducting a field study of an alpine karst system to advance our understanding of karst aquifers in the Canadian Rockies
- Developing a GIS-based tool to map the extent and distribution of alpine sedimentary aquifers and a method to represent the groundwater storage-discharge characteristics of these aquifers using relatively simple mathematical algorithm
- Developing a 3D hydrogeological model of a permafrost-influenced alpine basin
- evaluate how freezing parameters affect groundwater dynamics in a cryohydrogeologic model
- applying CRHM to a site in the High Peruvian Andes
- Identifying the influence of frozen ground and geomorphic setting on the storage and release of water in cold alpine catchments.

• Evaluation of thermal regimes in cold mountainous rivers.

Wetlands and Vegetation

- Using dendrochronology and wood anatomy analysis to test correlations between wood anatomy and growth of shrubs versus snowpack across long-term monitoring snow stations at various elevations.
- Examine ET relative to sub-surface processes governing surface water storage and groundwater-surface-water interactions, and the development of ground frost in relation to snow depth and Chinook activity.
- Understand the impact of winter conditions on mountain peatland soil frost development and carbon flux.
- Evaluate beaver dam impacts on peatland ET.
- Advance the inclusion of beaver dams in catchment hydrologic models
- Assessment of the impacts of the summer 2021 heat dome with several MWF and GWF collaborators

- Utilization of stable isotopes to identify plant water sources in alpine catchments.
- Investigation of wetland hydrology and type in cold alpine catchments.

Cryosphere

- Contined measurements of bedrock/snowpack temperatures, detailed thermal profiles of snowpacks at two alpine locations, and measurements of thermal conditions in and around alpine vegetation
- Continued glacial investigations in the Canadian Rockies

Climate

- Characterizing rain-snow transitions in the southern Canadian Rockies using CONUS I simulations.
- Carrying out additional studies on atmospheric rivers including the extreme mid-November 2021 event in BC.
- Carrying out a background observational and CONUS II climatology of near-0°C conditions in the Terrace area.
- Collecting precipitation characteristics at the surface and aloft to document near-0°C conditions in Terrace, BC during November-December 2021.

Model Development and Testing

- Finalizing VIC-GL simulations for the Iskut River Basin using VIC-GL model coupled to a Regional Glacier Modeling (RGM).
- Analyzing the impact of glacier dynamics on streamflow generation.
- Comparing the simulation outputs to contrast changes in the glacierized (Iskut) versus nonglacierized (Tuya) sub-basins to quantify the contribution of glacier melt to river flows.
- Preparation of a manuscript reporting on the VIC-GL simulations.
- Ongoing CHM model testing and development.

The main accomplishments expected by the end of the project are:

Surface/Groundwater Interactions

- GIS-based tools to map alpine aquifers for medium-size (< 2000 km²) high-elevation watersheds
- Simple mathematical algorithms to represent groundwater storage-discharge characteristics of alpine aquifers.
- Methodology to estimate the probability of alpine permafrost in the Canadian Rockies based on climate, topography, and surficial covers.
- Improved understanding of alpine karst aquifers in the Canadian Rockies
- Improved understanding of how groundwater (and groundwater-surface water interactions) contributes to streamflow generation in mountain environments
- Quantify the hydrological connectivity to hillslopes, underlying alluvial aquifers and buried alluvial fans, and their role in runoff generation
- Evaluate drivers of long-term water balances in select mountainous catchments.

Wetlands and Vegetation

- Quantify importance of shoulder season ET from sub-alpine forests, and identify dominant controls.
- Identify influence of vegetation change on alpine hydrology.

Cryosphere

• Improved understanding of cryosphere change on coupled climate-hydrological systems *Model Development and Testing*

• Completion of the VIC-GL simulations for the Stikine River Basin.

- Completion of a manuscript reporting in the changing contribution of snow and glacier melt to streamflow generation in the Stikine watershed.
- Archiving in a public data repository of VIC-GL simulation output.
- Advancement of CHM development.

Climate

- Better understanding of changes in rain-snow transitions across western Canada in warmer climate conditions.
- Better understanding of AR contributions to hydrological extremes, floods and other hazards in BC including the fall 2021 active storm season.
- Determination of near-0°C conditions at Terrace and nearby regions and expected changes using observational datasets and CONUS II information.

Here is a key visual from the project (figure, photo, table, graph, etc.)

