A Vision: Convergence & Integration

INTEGRATED MODELLING PROGRAM FOR CANADA - SUMMARY

IMPC was specifically designed to link diverse research disciplines and investigator-user communities to develop and integrate complex modelling capabilities for major river basins under four interconnected themes.

PI: Saman.Razavi@usask.ca, Co-PI: Karl-Erich.Lindenschmidt@usask.ca, Manager: Ashleigh.Duffy@usask.ca **CONTACTS**

Irrigation Water Demand Model

Water Resources System Model

Hydro-Economic Model

Integrated Water Management Framework for the Saskatchewan River Basin (Leila Eamen)

imes 10 4 . **Permafrost Area** (km²)under an optimistic emission scenario (SSP126) 2000 2020 2040 2060 2080 2100

WRMSask model: coupled with irrigation, and inter-regional hydro-economic model; policy and climate scenarios. Eamen, Roy Brouwer (Above, Eamen)

Agent Based Agricultural Demand (ABAD) Model: Rebound Phenomenon; irrigation, demand management

Permafrost: Liard River Basin sensitive northern regions; optimistic & pessimistic scenarios (Left, preliminary results, Abdelhamed)

Sensitivity analysis: VARSTOOL python package updated September 2022

South Sask River Model: heavy metal scenarios complete (HEC-RAS+WASP); after Gardiner Dam

Sask River Delta 2D HEC-RAS: scenarios complete; in discussion with N. Village of Cumberland House (Left, shear stress, preliminary, Sabokruhie)

Karl-Erich indenschmid¹

Tricia

Stadnyk

Graham

Strickert

Carl Gutwin

Tim Jardine

Saman

Razavi

Naturalized flows up to Lake Diefenbaker inlet

(MESH) Next, regulated outflows (L. Diefenbaker model); possible future climate scenarios (MODSIM outputs)

Nelson-Churchill HYPE permafrost distribution: 7 soil layers instead of 3; climate scenarios (Left, Bajracharya et al., preliminary results)

Nelson-Churchill River Basin MiP Phases 1 & 2 complete: Difficulty with Q, some AET errors, reasonable SWE.

Distributed Water Science

Cumberland House modelling feedback Visualization tools; HEC-RAS outputs; incorporating feedback

Water Explorer decision-support tool: visualizing WRMSask Model outputs; incl. recent irrigation plans.

EB Campbell visualization tool

new river level display, enhanced time-series viewer to view past/present (Left, Ana-Pietje Du Plessis)

Delta Dialogues from talk to walk in 2023

User Engagement Social Network Analysis Last phase

Story Sprints Co-facilitating and participating in GWF knowledge mobilization team workshops

Ecological Indicators for Flow Models

Deviations in Naturalized Flows: Sask River Basin; well-integrated with flow models (MESH); Ecological consequences of altered flows. (Left, from presentation)

KM/Engagem MORE VIDEOS ent

Visualizing WRM model results: Exploring the 'Water Scenario Explorer' Saman Razavi, Carl Gutwin, Leila Eamen, Ana-Pietje Du Plessis,

Community-based models & tools in IMPC Graham Strickert, Tim Jardine, Pouya Sabokruhie, Ana-Pietje Du Plessis

Quantile Mapping Climate Model Simulations Simon Papalexiou, Chandra Rupa Rajulapati

GRIP-GL & Nelson MiP Milestones: The Great Lakes & Nelson Model Intercomparison Project Juliane Mai, Bryan Tolson

University of

Dr. Karl-Erich

University of

Canada

McMaster

University !!

University of

University of Waterloo

University of SASKATCHEWAN **WATERLOO**