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Challenge:		
•  Reliable	esWmaWon	of	idf	curves	for	current	and	future	climates	despite	
•  Short,	sparse,	precipitaWon	records	
•  The	death	of	staWonarity	

PossibiliWes	that	have	been	/	are	being	invesWgated,	include:	
•  Temperature	scaling	based	on	”binning	scaling”	derived	from	historical	sub-

daily	records	(Zhang,	Zwiers,	G.	Li,	Wan,	Cannon;	Nature	Geo,	2017)	
•  Temperature	scaling	based	on	an	RFA	approach	(C.	Li,	Zhang,	Zwiers)	
•  Exploit	dependence	between	two	different	a_ributes	of	precipitaWon	(Ben	

Alaya,	Zwiers,	Zhang;	JHM,	submi_ed)	
•  Role	of	circulaWon	change	(Curry,	Ul	Islam,	Déry,	Zwiers,	Tan)	

Plans	
•  Ben	Alaya	will	come	onto	the	project	
•  Student	or	other	HQP	remain	to	be	idenWfied	
•  Ben	Alaya	will	conWnue	invesWgaWon	of	temperature	scaling	and	linking	model	

simulate	extremes	to	observaWons	
•  Pillar	1	project	with	Yanping	will	provide	physical	processes	underpinning	



Binning scaling 
 

Zhang et al., Nature Geo, 2017
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Changes in sub-daily extreme rainfall
A super CC scaling relationship with temperature for extreme 1-hour 
precipitation amounts was first reported in the century-long record of 
hourly observations at De Bilt, the Netherlands20. Extreme hourly pre-
cipitation observations at De Bilt were found to scale with tempera-
ture at the CC rate for low temperatures, at double this rate for higher 
temperatures (above 12 °C), and at an intermediate rate when temper-
atures exceed 22 °C. Similar super CC rates are found in other parts 
of the world, although the threshold temperatures at which extreme 
precipitation scaling changes may differ slightly between regions20–31. 
Due to limited data availability, the scaling of sub-daily rainfall is 
typically estimated based on local day-to-day temperature vari-
ability. Estimation involves binning hourly rainfall according to the 
temperature of the day on which the rainfall occurs and then empiri-
cally deriving a high precipitation percentile (99th or higher) for 
each temperature bin. Statistically, these are ‘conditional precipitation 

quantiles’, where the conditioning factor is local daily temperature (see 
Methods for a more detailed statistical description). The scaling rate 
is determined by visual inspection20 or a more quantitative regression 
analysis22 of the conditional quantiles. Studies have used either daily 
mean temperatures or daily dew-point temperatures, and in one case, 
hourly dew-point temperatures a few hours prior to the occurrence of 
precipitation23. A variant of the binning approach that uses quantile 
regression on daily temperature has also been used32.

Approaches based on conditional quantiles are rather differ-
ent from those used to determine how extreme daily precipita-
tion responds to warming over the long term. The latter are based 
on the ratio of long-term absolute changes in extreme precipitation 
and mean temperature5,8. A direct link between the dependence of 
conditional quantiles on temperature (binning scaling) and the long-
term extreme precipitation response to warming (trend scaling) has 
not been established. Nevertheless, the binning scaling has been used 
as a substitute for trend scaling to predict the response of extreme 
precipitation under projected climate change20. Recent studies based 
on simulations conducted with convection-permitting models cast 
doubt on the reliability of this approach33,34.

Assumptions of the binning approach
The annual cycle involves not only the seasonal temperature changes 
but also transient changes in weather patterns at seasonal and 
sub-seasonal time scales. Because of this connection, condition-
ing extreme hourly precipitation on daily temperature is similar to 
conditioning on other aspects of the seasonal cycle, such as seasonal 
changes in weather patterns and large-scale circulation that occur 
simultaneously with seasonal temperature changes. Thus from a sta-
tistical perspective, the association between temperature and precipi-
tation identified via conditional quantiles does not establish a causal 
relationship between precipitation and temperature change because 
a common factor — the annual cycle — affects both. Furthermore, 
relationships diagnosed empirically from seasonal changes may not 
be suitable for predicting the generally smaller response of the climate 
system to slow secular changes that result from changes in green-
house gas concentrations. Consequently, for both reasons, binning 
scaling should not be interpreted as being predictive of the response 
of extreme precipitation to global warming (trend scaling) without 
first checking these implicit assumptions. 

The confounding of the influences of annual cycle driven varia-
tions in weather systems and temperature on precipitation implies 
that, at individual locations, results may be a consequence of extremes 
produced by very different precipitation mechanisms, ranging from 
localized intense convective events to extreme precipitation driven 
by large-scale moisture advection from distant source regions where 
temperatures are very different from the local daily mean tempera-
ture. Indeed, from observations obtained from dense observing net-
works in Switzerland, lower binning scaling rates were found for both 
convective and non-convective extreme precipitation when consid-
ered separately, but a higher binning scaling rate was obtained when 
these two types of extreme precipitation were combined35. This sug-
gests that the changes in dominant storm types between seasons may 
be a possible explanation for super CC binning scaling; the transi-
tioning from cooler season non-convective to warmer season convec-
tive precipitation storm types is part of the seasonality of the weather 
systems and clearly reflects seasonal variations in circulation as well 
as temperature. Even where super CC binning scaling is observed in 
convective precipitation alone29, there is still a question of whether the 
relationship between precipitation and temperature is independent of 
the characteristics of the underlying storms. In contrast, it seems rea-
sonable to expect that, at most locations, the mechanisms that pro-
duce annual precipitation extremes will not change as markedly as the 
cyclical variation of mechanisms that occurs each year with the march 
of the annual cycle, or even for a given precipitation type, within sea-
sons. For example, regional climate model (RCM) simulations over 
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Figure 1 | Long-term trends in, and relationship between, extreme 
precipitation and dew-point temperatures. a, Time series of wet-day 
dew-point temperature anomalies. The black and red lines show the 
linear trend (least-squares fit) in regional average dew-point temperature 
and its 90% confidence interval. b, Time series of normalized extreme 
hourly precipitation. The black dashed line shows the trend (which is 
not statistically significant) in the median value obtained by fitting a 
generalized extreme value (GEV) distribution with year as a covariate 
in the location parameter. Red dashed lines show the 90% confidence 
interval for the trend. c, Scatter plots of summer mean wet-day dew-point 
temperature anomalies and normalized (Supplementary Information) 
summer maximum 1-hour precipitation at the same stations over 
1957–2015. A significant relationship between extreme precipitation and 
dew-point temperature can be identified — at 6.8% intensification in the 
median value per 1 °C dew-point temperature change — by fitting a GEV 
distribution with dew-point temperature as a covariate in the location 
parameter. The black and red lines show the estimated median values of 
precipitation and their 90% confidence intervals conditional on dew-point 
temperature anomalies. Different stations are marked by different colours.

Td	and	hourly	precipitaWon		
at	5	NLD	staWons	for	1957-2015	
(colours	indicate	staWons)	

JJA	mean	wet-day	Td	vs	Wme	

JJA	maximum	hourly	P	vs	Wme	

JJA	max	hourly	P	vs	JJA	mean	wet-day	Td		

•  Significant	warming	
•  No	discernable	trend	in	extreme	hourly	P	
•  Significant	(but	noisy)	relaWonship	
between	Td	and	summer	max	hourly	P	
(we	esWmate	~6.8%	intensity	increase	for	
a	1°C	increase	in	Td)	
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the Mediterranean region show an annual cycle that is warmer under 
future forcing scenarios but is otherwise similar to the historical 
annual cycle, and the extreme precipitation–temperature relationship 
established through the binning approach correspondingly shifts to 
higher temperatures31.

The response to long-term warming in extreme precipitation is no 
doubt also affected by confounding circulation effects, but the rela-
tive importance of dynamic and thermodynamic influences will be 
very different, and arguably less pronounced, than experienced over 
the course of an individual annual cycle or season. The dynamical 
response to global warming is generally felt to be uncertain and mod-
est36–38, as is also supported indirectly by the absence of detection and 
attribution results concerning storm frequency, intensity or location. 
To the extent that long-term changes in circulation do occur in some 
regions as the climate warms, for example, due to possible storm track 
changes, the impact on extreme precipitation may nevertheless dif-
fer in character from extreme precipitation changes associated with 
an equivalent temperature change in the course of the annual cycle. 
Thus, from a physical perspective, results obtained from the binning 
approach will not necessarily reflect changes in precipitation intensity 
under global warming.

Conditional quantile-based scaling not a reliable predictor
Historical changes in extreme precipitation are difficult (although 
not impossible) to discern, and scale differently with temperature 

change than the scaling that is inferred from the analysis of condi-
tional quantiles, as can be illustrated with long records of high-quality 
hourly precipitation from five observing stations in the Netherlands 
(Methods). Figure  1a illustrates the very clear warming trend in 
summer wet-day dew-point temperature at these stations, which is 
consistent with warming that has occurred over most of the world39. 
Despite the significant long-term trend in temperature, the long-term 
trend in extreme hourly precipitation is very uncertain and not statis-
tically distinguishable from zero (Fig. 1b). Nevertheless, the relation-
ship between summer maximum hourly precipitation and the local 
seasonal mean dew-point temperature or wet-day dew-point tem-
perature is significant (Fig. 1c). The median of maximum 1-hour pre-
cipitation increases by 7.2% per °C increase in seasonal mean wet-day 
dew-point temperature (Supplementary Table 3), and by 6.3% per °C 
increase in hourly dew-point temperature observed 2 hours prior to 
the extreme rainfall event. The smaller rate of the latter is probably 
due to larger noise in the hourly dew-point temperature (Methods), 
indicating the need to reduce noise in the predictor by averaging over 
time or space or by pooling data from different locations when estab-
lishing precipitation and temperature relationships. These trend scal-
ing rates are consistent with the CC rate. Figure 2 shows the estimated 
binning scaling rates for the same locations based on the 99.9th and 
the 99th percentiles of hourly summer precipitation conditional on 
daily mean dew-point temperatures. Conditioning on daily mean 
temperature gives a similar plot. In contrast with the trend scaling 
estimate, super CC scaling is observed over most of the temperature 
range, consistent with earlier findings20,23.

The largest conditional 99.9th and the 99th percentiles, which are 
the most relevant to impacts, correspond to dew-point temperatures 
of about 19 °C. Under a warming scenario with a 2 °C temperature 
increase and assuming no significant change in circulation, and thus 
no significant change in the mechanisms that produce annual pre-
cipitation extremes, one would expect a shift to the binning curve as 
reported in refs 31 and 40. That is, the largest conditional 99.9th and 
the 99th percentiles would have larger values due to an increase in 
atmospheric moisture, and would occur at dew-point temperatures 
of about 21 °C. In contrast, if the binning curves for the current cli-
mate were to be used to project the future by reading off the condi-
tional quantiles that correspond to 21 °C, a decrease in these extreme 
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Figure 2 | Relationship between extreme 1-hour precipitation and the 
daily dew-point temperatures during wet days in summer. Binning 
method estimates of 99.9th and the 99th conditional percentiles of hourly 
precipitation (conditional on daily dew-point temperature) based on data 
from five observing stations in the Netherlands. Super CC scaling (around 
14% per °C) between precipitation and dew-point temperature is clearly 
seen. The dotted lines represent the 7% per °C (black) and the 14% per °C 
(red) rates. JJA, June–July–August.
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Figure 3 | Schematic representation of possible shifts of binning curves 
in the warmer world assuming no circulation change. The binning curve 
in the warmer climate (red) shifts along the current climate (blue) curve 
if the binning rate is the same as the trend rate (left); it shifts right-
downwards if the binning rate is larger than the trend rate (middle), and 
right-upwards if the binning rate is smaller than the trend rate (right). The 
black lines represent changes in the heaviest precipitation from the current 
to the future climates. The slopes of the binning curves and the black lines 
represent the binning scaling rates and trend scaling rates, respectively.
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•  Strong	super-CC	scaling	is	evident	
•  And	warming	is	evident	
•  Why	don’t	we	see	significant	long-term	
change	in	extreme	hourly	P?	

•  Can	we	use	binning	scaling	to	project	
future	change	in	extreme	hourly	P?	
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quantiles would have been projected. Clearly, the conditional quan-
tiles by themselves do not tell how the impact relevant heaviest hourly 
precipitation would change under warming conditions. 

Observational data from different parts of the world show similar 
binning scaling curves with conditional extreme hourly precipita-
tion quantiles that increase with temperature up to a certain level, 
and with decreasing conditional quantiles for temperatures above 
that level20,22,23,30,31,40. This suggests that the most impact-relevant 
hourly precipitation extremes occur in a relatively narrow tempera-
ture range and under particular weather conditions. Figure 3 illus-
trates three conceivable scenarios for how the binning curve might 
shift in a warmer world assuming the absence of a large circulation 
change, depending upon whether the trend scaling rate is the same, 
smaller, or larger than the binning scaling rate. In a simulation with 
a convection-permitting model over the US, the thermodynamic 
impact of global warming shifts the binning curve along a 7% per 
°C trajectory as in Fig. 3 (left)40. Focusing again on the Netherlands, 
simulations with conventional RCMs (Methods) show a shift of the 
binning curves based on the 99th and 95th conditional percentiles 
of summer daily maximum 1-hour precipitation right-downwards 
as in Fig.  3 (middle) for the 2051–2100 climate compared to that 
for 1951–2000  for almost all the simulations analysed (Fig.  4  and 
Supplementary Fig. 2). This shift is consistent with the difference 
between the simulated binning and trend scaling rates. The median 
value of the multi-model trend scaling is 8.1% and 2.8% per °C dew-
point temperature increase for the 99th and the 95th percentiles, 
respectively, whereas the corresponding binning rates are 12% and 
13% per °C dew-point temperature increase under both current 

and future climates (Supplementary Table 4). Similar to ref. 40, the 
use of model projected temperature increase under the CC scaling 
assumption also resulted in a reasonable prediction for the future 
binning curve. 

Concluding remarks
It is established, based on long-term observations of daily precipi-
tation from over 8,000 stations and simulations by multiple GCMs, 
that daily extreme precipitation has increased in more regions than 
where it has decreased, and that the increase can be attributed to 
human influence5,9,17,41. Furthermore, the increase in extreme daily 
precipitation, when averaged over global land areas, scales with 
global mean temperature increase at about the expected CC rate5. 
Nevertheless, the understanding of changes in daily and, to a greater 
extent, sub-daily extreme precipitation at the regional and local 
scale is still very limited. A key challenge in this regard is that the 
availability of historical sub-daily precipitation data is very limited. 
Therefore, robustly characterizing past changes in sub-daily extreme 
precipitation, and attributing those changes to causes — which is a 
requisite for understanding future changes — is not an easy task. 
In this regard, it is important to establish a global database for sub-
daily precipitation data to increase access to existing sub-daily pre-
cipitation data. It is also hoped that coordination under the World 
Climate Research Programme Grand Challenge on extremes42,43 will 
help advance the understanding of the response of sub-daily extreme 
precipitation to historical warming. The development and applica-
tion of advanced statistical methods that make better use of spatial 
information (for example, trading space for time) will also make an 
important contribution.

Although our analysis of binning scaling in conventional RCMs 
supports the view that binning scaling is not suitable for projecting 
long-term change in hourly precipitation extremes, these results 
are helpful only insofar that insight from a system with simplified 
physics is informative of behaviour that might be expected in a sys-
tem with more complex physics. Sub-daily precipitation extremes 
are often produced by convective events, but conventional global 
and regional climate models are not able to simulate such events 
well because of limited spatial and temporal resolution and because 
convection is not explicitly resolved44–46. Rather, parameterizations 
are used to estimate the effects of convection at the grid scale. The 
behaviour of hourly precipitation accumulations in these models is 
thus probably sensitive to the details of the parameterizations and 
how they are tuned47. Additionally, the hourly accumulation period 
aggregates precipitation from relatively few time-steps (typically 
four) of the model integration, and thus should be considered to be 
a temporal resolution that lies at the very lower limits of the model’s 
temporal ‘skilful scale’48. Conventional RCMs may therefore not be 
well suited to investigate the response of sub-daily extreme precipi-
tation to anthropogenic forcing. Moreover, high-resolution convec-
tion-permitting models may provide more realistic representation of 
the local storm dynamics49 that are important for reproducing the 
magnitude of extreme local precipitation measurements. The use of 
convection-permitting models, in combination with advanced sta-
tistical methods that make better use of spatial information, may be 
required to reliably project future changes in short-duration pre-
cipitation extremes, although convection-permitting models are also 
affected by their own uncertainties50. In the interim, it would be pru-
dent for those undertaking adaptation planning and requiring engi-
neering design values for long-lived infrastructure to be guided by 
the CC relationship in most mid-latitude locations, consistent with 
results for extreme daily precipitation from observations and mod-
els, bearing in mind that the levels of uncertainty in future projection 
is high and may remain so for some time.
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published online 27 March 2017 
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Figure 4 | The binning curves of hourly precipitation shift right-
downwards in simulations of the future warmer climate with conventional 
RCMs. The 99th and 95th conditional percentiles are computed based 
on daily maximum hourly precipitation simulated by the Rossby Centre 
regional climate model when driven by a Bergen climate model climate 
change simulation over the region spanned by the five observing stations 
in the Netherlands. Thick solid and dashed lines represent binning curves 
in the historical and future climates respectively. The thin solid lines show 
predictions based on the CC relation that are obtained by shifting the 
current climate binning curve by the projected future warming and the 
multiplying by 1.07. The dotted lines represent the 7% per °C (black) and 
the 14% per °C (red) rates.

CondiWonal	hourly	precipitaWon	
percenWles	(condiWonal	on	wet-day	Td)	
in	Rossby	Centre	RCM	(ENSEMBLES)	

•  Thick	curves	–	historical	climate	
•  Do_ed	curves	–	future	climate	
•  Thin	curves	–	historical,	scaled	by	CC	rate	

•  Models	ship	the	binning	scaling	curve	
upwards	and	to	the	right	(at	the	CC	rate)	

•  Annual	or	seasonal	max	precipitaWon	
increases	at	the	CC	rate	where	
thermodynamics	dominate	

•  Long	return	period	extremes	increase	at	
the	CC	rate,	not	the	super-CC	rate	



Temperature scaling using RFA 
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Evaluate	the	”index	flood”	method	(pools	data	from	regions	where	extremes	have	
the	same	distribuWon	aper	scaling	by	the	local	”index	flood”)	

•  Fit	non-staWonary	GEV	at	individual	locaWons	
•  Use	the	esWmated	locaWon	parameter	as	the	”index	flood”	
•  Scale	annual	extremes	by	the	index	flood,	and	pool	regionally	to	esWmate	
scale	and	shape	parameters	

•  Test	pairwise	to	see	if	scaled	extremes	are	from	the	same	populaWon	
Applied	to	CanRCM4	large	ensemble	(35	runs,	1951-2100,	hourly	precipitaWon)	
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in the latter two configurations. In practice, the rate of uncertainty reduction

rapidly declines and gradually levels o� with increasing spatial pooling. It is

therefore hoped that the power of uncertainty reduction would not lose that

much comparing to the analysis with the full set of grid cells in a box. In fact,

we obtained statistically indistinguishable estimates of scaling rate from spatial

pooling over all grid cells in a 5 ◊ 5 box and over the 9 selected grid cells in

this box (i.e., the configuration shown in the middle-right panel of Fig 3; Fig

S.TBD).

A valid regional analysis requires that the pooled data from di�erent grid

cells, after they have been divided by the site location parameter, can be con-
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FracWon	of	
model	runs	for	
which	“Type-I“	
non-staWonary	
model	passes	
KS-test	

Single−grid analysis Regional analysis
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Figure 4: The most often selected GEV model for hourly extreme

precipitation. Panels show the most often selected GEV model among the

35 CanRCM4 runs for annual maximum hourly precipitation during 1951-2016

(top panel), 2036-2100 (middle panel) and the whole 1951-2100 period (bottom

panel), based on at-site analysis (left panel) and regional analysis with the

largest spatial pooling considered (right panel). Hatching highlights regions

where at least 80% of the model runs agree on the selected GEV model.
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Figure 7: Robust response of extreme precipitation to temperature

increases. A, Scaling rate (in %/�) of annual maximum hourly precipitation

with temperature represented by the ensemble mean of the individual estimates

from the 35 simulations from 1951 to 2100. B, The e�ect of Arctic amplification

illustrated by the ratio of the linear trend in the mean annual temperature

averaged over all grid cells within a latitude band to that averaged over the

entire model domain. C, Scaling rate of annual maximum hourly precipitation

after correcting for the e�ect of Arctic amplification. D, Uncertainty (unitless)

in the estimated scaling rate shown in panel C expressed as scaling rate per

standard error of the estimate, which is approximated by the standard deviation

of the individual estimates scaled by 1

/

Ô
35. Scaling rate estimation is conducted

by regional analysis with the largest spatial pooling considered. Hatching in

panels A and C highlights regions where the scaling rate is consistent with

the Clausius-Clapeyron relation (5.7%/�~8.1%/�) for typical annual mean

temperatures during 1951-2100 over North America. Trends in panel B are

estimated using the non-parametric Sen’s slope estimator[ref xx]. See Fig 8 for

extreme precipitation at other durations.

19

A B C

D

0 1 2
Trend ratio

−15 −12 −9 −6 −3 0 3 6 9 12 15
Extreme precipitation scaling rate [%/°C]

−100 −50 −10 −5 −3 0 3 5 10 50 100
Scaling rate per standard error [unitless]

Figure 7: Robust response of extreme precipitation to temperature

increases. A, Scaling rate (in %/�) of annual maximum hourly precipitation

with temperature represented by the ensemble mean of the individual estimates

from the 35 simulations from 1951 to 2100. B, The e�ect of Arctic amplification

illustrated by the ratio of the linear trend in the mean annual temperature

averaged over all grid cells within a latitude band to that averaged over the

entire model domain. C, Scaling rate of annual maximum hourly precipitation

after correcting for the e�ect of Arctic amplification. D, Uncertainty (unitless)

in the estimated scaling rate shown in panel C expressed as scaling rate per

standard error of the estimate, which is approximated by the standard deviation

of the individual estimates scaled by 1

/

Ô
35. Scaling rate estimation is conducted

by regional analysis with the largest spatial pooling considered. Hatching in

panels A and C highlights regions where the scaling rate is consistent with

the Clausius-Clapeyron relation (5.7%/�~8.1%/�) for typical annual mean

temperatures during 1951-2100 over North America. Trends in panel B are

estimated using the non-parametric Sen’s slope estimator[ref xx]. See Fig 8 for

extreme precipitation at other durations.
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estimated using the non-parametric Sen’s slope estimator[ref xx]. See Fig 8 for

extreme precipitation at other durations.
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Scaling	rates	are	slightly	lower	
for	longer	accumulaWons	



Probable Maximum Precipita#on 

 
M.A. Ben Alaya, et al., JHM, submiNed



Moisture maximiza#on
•  The	idea	is	to	inflate	individual	observed	precipitaWon	events	to	their	
plausible	upper	bounds	
•  the	event	that	might	have	been,	given	suitable	atmospheric	condiWons	

•  Let		
•  p(t) be	an	observed	precipitaWon	amount	at	Wme	t	
•  PW(t) be	the	amount	of	precipitable	water	in	the	atmospheric	column	
•  PWmax be	a	maximum	value	for	PW(t) 
•  𝑃𝐸(𝑡)=𝑝(𝑡)/𝑃𝑊(𝑡)	be	precipitaWon	efficiency,	and 
•  𝑞(𝑡)=𝑃𝐸(𝑡)𝑃𝑊↓𝑚𝑎𝑥  be	the	maximized	value	of	𝑝(𝑡)	

•  Then	PMP	=	max{𝑞(𝑡),𝑡= 𝑡↓1 , …, 𝑡↓𝑛 }= 𝑃𝐸↓𝑚𝑎𝑥 𝑃𝑊↓𝑚𝑎𝑥 	



Use	a	bivariate	extreme	
value	model	for	annual	
(𝑃𝑊,𝑃𝐸) pairs	to	infer	
the	distribuWon	of	 
 
𝑃𝑀𝑃↓𝐵𝑉 = 
max┬𝑡  {𝑃𝑊(𝑡)𝑃𝐸(𝑡
)}  

G
EV

	

GEV	

A probabilis#c framework

Tested	by	applying	the	method	
to	a	single	50-year	CanRCM4	
simulaWon	covering	1951-2000	



PMP es#mates for 6-hour accumula#ons  
based on a seasonally restricted model with storm transposi#on

•  Panels	display	mean	values	based	on	50-yr	(𝑃𝑊,𝑃𝐸)	Wme	series	resampled	from	the	
corresponding	fi_ed	bivariate	EV	distribuWons		

•  Compared	to	the	Gumbel	copula,	the	comonotone	copula	overesWmates	PMP	by	~15%	
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Figure 5. Single value PMP estimates for CanRCM4 simulated 6-hour accumulations via 830	

traditional moisture maximization in (b), and mean PMP values obtained using the bivariate 831	

GEV model via the comonotone copula in (a) and the Gumbel copula in (c).   832	
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•  Port	Arthur,	TX,	received	661	mm	in	24	hours	on	29	Aug	2017	during	Hurricane	Harvey	(~24-31	Aug	2017)	
•  The	NOAA/NWS	analyzed	product	(staWon	and	radar	blend)	indicates	a	few	hourly	accumulaWons	in	the	

area	on	27	Aug	2017	of	more	than	500	mm	



 

Figure 2.8:  Alexandra Bridge during Flood of 1894 

Fraser River Flooding 
	
Siraj Ul Islam (UNBC), Charles Curry (PCIC), Dery, Zwiers (papers in prep)
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CMIP5	ensemble	mean	area-averaged	runoff	for	Rocky	
Mountains,	Interior	Plateau	and	Coast	Mountains.		
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Annual	peak	flow	Wming	and	magnitude	

	
	
Scatter plots of annual peak flow magnitude (APF) versus date (APD) for the CMIP5-VIC-simulated historical (left) and 
future (right) periods. A different symbol is used for each of the 21 driving GCMs.  
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Discussion


