

UNIVERSITY OF SASKATCHEWAN

Global Institute for Water Security

www.usask.ca/water

Convection-permitting WRF regional climate simulations over Canada GWF Pillar 3 Climate-Related Precipitation Extremes

Yanping Li

Continental Scale Regional Climate Simulation using 4-KM WRF

WRF Model Setup and Design

- WRF Model (Version 3.4.1)
- A single domain: 2560 x 2800 km²;
 4 km grid spacing; 37 levels
- Microphysics Scheme: New Thompson et al.
- PBL scheme: YSU
- RRTMG Long-wave and Short-wave scheme
- No Cumulus parameterization used, assumed explicit

Forcing Data

 The 6-hourly, 0.703⁰ x 0.703⁰ resolution ERA-Interim reanalysis data provide the initial and lateral boundary condition

WRF dynamical downscaling for 2000-2013

Saskatchewan

Global Institute for Water Security

WRF-historic

1.5

1

2 2.5

з

3.5

4.5

4

118°W 116°W 114°W 112°W 110°W 108°W 106°W 104°W 102°W

1.5 2 2.5 3 3.5 4 4.5

5

Annual precipitation – CMIP5 vs WRF

Global Institute for Water Security

WRF dynamical downscaling of CMIP5

Global Institute for Water Security

WRF-PGW

UNIVERSITY OF SASKATCHEWAN

4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

118°W 116°W 114°W 112°W 110°W 108°W 106°W 104°W 102°W

2.5

5.5 1 1.5 2

3.5

з

4.5 5

4

Geographic distribution of seasonal mean precipitation (a), *T*min (b) and *T*max (c), over the period from Oct 2000 – Sept 2013 for WRF and ANUSPLIN.

Daily Tmin

Monthly T2: CONUS-WRF

CCRN-WRF

Saskatchewan

252 256 260 264 268 272 276 280 284 288 292 296 300

252 256 260 264 268 272 276 280 284 288 292 296 300

Global Institute for Water Security

CONUS-WRF precipitation validation

Liu C., K. Ikeda, R. Rasmussen, M. Barlage, A. J. Newman, A. F. Prein, F. Chen, <u>L. Chen</u>, M. Clark, A. Dai, J. Dudhia, T. Eidhammer, D. Gochis, E. Gutmann, <u>S. Kurkute</u>, **Y. Li**, G. Thompson, D. Yates, 2017: Continental-Scale Convection-Permitting Modeling of the Current and Future¹Climate of North America, *Climate Dynamics*, 49, 71-95.

CCRN-WRF Performance Evaluation (Annual cycle)

Global Institute for Water Security

WRF Precipitation Annual cycle for SRB

WRF Temperature Annual cycle for SRB

Precipitation, Temperature Annual cycle for MRB, SRB

Bias Corrections of Precipitation measurements across different ecoclimate regions

Xicai Pan, Daqing Yang, Yanping Li*, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, Richard Janowicz, 2016:Bias Corrections of Precipitation Measurements across Experimental Sites in Different Ecoclimatic Regions of Western Canada, *The Cryosphere*, 10, 2347-2360

Global Institute for Water Security

Xicai Pan PDF

CCRN-WRF Performance Evaluation -PDF for daily precipitation intensity

CCRN-WRF Performance Evaluation -PDF for hourly precipitation intensity

MRB

25

25

30 35 40

30 35 40

obs

ctl

pgw

SRB

CCRN-WRF Performance Evaluation (Diurnal cycle)

Global Institute for Water Security

WRF NDOWN

Sensitivity test for land-atmosphere interaction

LAND USE CATEGORY

Using 4-km WRF CONUS simulations to diagnose surface coupling strength

Global Institute for Water Security

Sr Y		
r		ting the
Land Cover barren_or_forme crop_nat_reg_nosalc croplands	alxed_forests	NO N
decidious_breadleaf decidious_needleleaf exergreen_needleleaf grasslands	open_shrublands permanent_wetlands urban_and_bu savannas vater snow_and_ice voody_savanna	× 110 1.000

Barren Tundra		
Mixed Tundra	Table I. Ger	1ei
Wooded Tundra	Site Location]
Water	US-Bkg	
Barren or Sparsely Vegetated	US-Aud	1
Snow and Ice	US-Fpe	
Cropland/Natural Vegetation Mosaic	US-Wkg	
Croplands	US-Var	1
Permanent Wetlands	US-ARM	1
Grasslands	US-Bol	4
Savannas	CA-WP1	3
Woody Savannas	CA-Ca3	
Open Shrublands	CA-Obs	
Mixed Forests	US-NR1	
Deciduous Broadleaf Forest	CA-Qfo	
Deciduous Needleleaf Forest	CA-Ojp	1
Evergreen Broadleaf Forest	CA-TP4	
Evergreen Needleleaf Forest	CA-Oas	1

Table 1. General Information About 15 FLUXNET Sites Used in This Study

			research (m)	Land-Cover Type	Canopy meight(m)	Years of Data Used
_	US-Bkg	44.35, -96.83	510	Croplands	0.2-0.4	2005-2007
	US-Aud	31.59, -110.51	1469	Open Shurblands	0.1-0.2	2003-2007
ie	US-Fpe	48.31, -105.10	634	Grasslands	0.2-0.4	2001-2007
IC	US-Wkg	31.74, -109.94	1531	Grasslands	0.5	2005-2007
	US-Var	38.41, -120.95	129	Woody Savannas	0.55+/-0.12	2001-2007
	US-ARM	36.61, -97.49	311	Croplands	0-0.5	2003-2007
	US-Bol	40.01, -88.29	219	Croplands	3.0(mz)0.9(sb)	2001-2007
	CA-WP1	54.95, -112.47	549	Permanant Wetlands	3.4	2004-2007
	CA-Ca3	49.53, -124.90	153	Evergreen Needleleaf	7.6	2001-2007
	CA-Obs	53.99, -105.12	598	Evergreen Needleleaf	9.4	2001-2007
	US-NR1	40.03, -105.55	3050	Evergreen Needleleaf	11.5	2001-2007
	CA-Qfo	49.69, -74.34	390	Evergreen Needleleaf	13.8	2004-2007
	CA-Ojp	53.92, -104.69	518	Evergreen Needleleaf	16.7	2001-2007
	CA-TP4	42.71, -80.36	219	Mixed Forest	20.3	2002-2007
	CA-Oas	53.63, -106.20	580	Deciduous Broadleaf	21.5	2001-2007

Storm characteristics during the lifecycle of the June 2013 Albert flood

Water Security

Convective/Stratiform separation

WRF derived radar reflectivity

Convective component

Li Yanping, K. Szeto, R. Stewart, J. Theriault, L. Chen, B. Kochtubajda, A. Liu, S. Boodoo, R. Goodson, C. Mooney, S. Kurkute, 2017: A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta. *Journal of Hydrometeorology*, http://dx.doi.org/10.1175/JHM-D-15-0176.1

The relationships between precipitation scaling defined intra-annually (binning scaling) and defined inter-annually (trend scaling)?

Global Institute for Water Security

How will mesoscale convective systems (MCSs) change in the future?

Global Institute for Water Security

MODE-TD analysis for Storm Characteristics: Speed, Lifetime, Size, maximum intensity, total P

from Andreas Prein, NCAR

Pillar 1: Short-duration extreme precipitation Global Institute for Water Security

in future climate

Continental Scale Regional Climate Simulation using 4-KM WRF

- Binning scaling (T-P relation) 1.
- Convective vs non-Convective precipitation 2.
- Physical mechanisms for Convection 3.

US Great Plains vs Canadian Prairies

Characteristics of MCSs (MODE-TD) 4.

speed, duration, Size, max intensity, total P

Land-atmosphere coupling

- Surface water budget, precipitation partitioning, remote moisture 1. source
- 2nd dynamical downscaling (NDOWN) 2.

Small region & Very high-resolution