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Motivation 
• User motivated questions 

• Dominantly engineering related 
• Extreme precip, snow load, wind load, wind/precip combinations 

• Uniform hazard  uniform risk  very long period return levels 

• Flood risk (riverine, not flash flooding) 
• Engineering and adaptation question 

• Early growing season frost risk changes 
• Agricultural impacts and adaptation question 
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Topics 
• Probable maximum precipitation (Ben Alaya) 

• Methodology  
• CanRCM4 and CRCM5 assessment 
• Projected changes under RCP8.5 

• Temperature scaling of extreme precipitation (Chao Li, Qiaohong Sun) 
• Methodology 
• Assessment of binning scaling in CanRCM4 and other models 
• Update of Westra et al, 2013 
• How much data is required 
• Role of circulation change 

• Atmospheric Rivers (Yaheng Tan) 

• EVA methodology for extreme precip (Ben Alaya, Dhouha, Whitney) 
• Direct application of asymptotic theory 
• A compound events approach 
• An empirical approach 
• Application to compound precip/wind events 

• Early growing season temperature variability (Xuebin, Budong) 

• Fraser River flooding regimes (Stephen Dery, Siraj Ul Islam, Charles Curry) 
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  Probable Maximum Precipitation 

Photo: F Zwiers 



PMP 
• Probable maximum precipitation (Ben Alaya) 

• Methodology  
• Based on bi-variate extreme value theory applied to the moisture maximization 

approach 

• Ben Alaya et al, 2018, doi:10.1175/JHM-D-17-0110.1  

• CanRCM4 and CRCM5 assessment 
• Ben Alaya et al., 2019a, submitted, J. Hydrometeorology 

• Projected changes under RCP8.5 
• Ben Alaya et al., 2019b, submitted, Climatic Change 
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https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
https://journals.ametsoc.org/doi/full/10.1175/JHM-D-17-0110.1
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Figure S14. Similar to Figure 9 but for 24-hours PMP estimates. 
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Figure S14. Similar to Figure 9 but for 24-hours PMP estimates. 

 
 

 

24-hour PMP estimates from CanRCM4 and selected NOAA HMR reports (circles) 
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 590 

Figure 4. Estimated long term 6-hourly PMP percentiles using the nonstationary bivariate 591 

GEV models fitted to CanRCM4 and CRCM5 data over North America for three different 592 

periods: 1951-2000, 2001-2050 and 2051-2100. 593 
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 576 

Figure 1. Bukovsky regions used in this study over North America. 577 
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 608 

Figure 7. Time varying temperature dependent PMP estimates for 6-hour accumulations 609 

in CanRCM4 and CRCM5 output using the regionally averaged nonstationary bivariate GEV 610 
model for each Bukovsky region over the period 1951-2100. The associated 80% confidence 611 

intervals based on the 10th and 90th percentiles of the simulated PMP distributions are shaded. 612 
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Evolution of 6-hour PMP estimates from CanRCM4 
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Temperature scaling 



Temperature scaling 
• Temperature scaling of extreme precipitation (Chao Li, Qiaohong Sun) 

• Methodology 
• Can “binning scaling” be used?  

• Zhang et al., 2017, doi:10.1038/NGEO2911  

• Assessment of binning scaling in CanRCM4 and other models 
• In progress, Qiaohong Sun (Pillar 1 project lead by Yanping Li) 

• How much data is required? 
• Li et al., 2019, doi:10.1029/2018EF001001  

• Role of circulation change 
• Li et al, 2019, submitted, GRL 

• Update of Westra et al, 2013 
• In progress, Qiaohong Sun (Pillar 1 project lead by Yanping Li) 
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https://www.nature.com/articles/ngeo2911.pdf?origin=ppub
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018EF001001
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Response of extreme 24-hour precipitation accumulations to warming 

• Adapt a method proposed by Emori and Brown (2005) for decomposing changes in 
mean precipitation into thermodynamic and dynamic components 

• Let ω represent vertical velocity, and define 
 
 

• Also, let 
• Pτ  be the τth quantile of 24-hour precipitation,  
• ωτ be the vertical velocity that corresponds to Pτ 

• δ indicate the differential with respect to temperature 
• Then 
 
 
 
Change wrt temperature  
                             = Thermodynamic + dynamic + cross term (small) 
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Response of extreme 24-hour precipitation accumulations to warming 
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Atmospheric rivers 
 

• Identify 3 kinds of ARs 

• Diagnose the dynamical 
processes involved in each 
kind 

• Diagnose role of dynamical 
versus thermodynamic 
influences 

• Intercompare several well-
performing models 

• CanESM2 excels in simulating 
ARs 

• Evaluate projections 
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 857 

FIG. 5. Composite IVT patterns for three AR types identified via SOM analysis in the ERA-I 858 

reanalysis (left) and CanESM2 simulations (right) for1980-2004. Southern types are 859 

displayed in (a) and (d); Northern types are showed in (b) and (e); and Middle types are 860 

presented in (c) and (f). Shading represents IVT magnitude in kgm-1s-1 and vectors indicate 861 

IVT direction. The number above each panel indicates the frequency of the corresponding AR 862 

type in Dec-Jan-Feb of 1980-2004.863 
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  EVA methodology 



EVA methodology 
• Should we expect extreme value theory to produce reliable estimates 

of long return period climate extremes?   
• Ben Alaya et al, 2019c, submitted, J. Climate 

• Can we solve the problem using a more physically based, compound 
events approach? 
• Ben Alaya et al., 2019d, in prep 

• Alternatively, should we chose a distribution other than the GEV 
distribution? 
• Ouali, Ben Alaya, et al., in prep. 

• Can we usefully apply a compound events approach to joint extreme 
precip and wind events? 
• Huang, et al, in progress 
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 480 

Figure 4. Return level estimates based on fitting the GEV distribution to annual maxima at four 481 

different locations A (in (b)), B (in (d)), C (in (f)) and D (in (h)) using one CanRCM4 simulation 482 
of 1951-2000 (50 annual maxima, in blue) and the 35 simulations (1750 annual maxima, in red). 483 

Geographical positions of the four locations are shown in (a). Black dots in panels (b), (d), (f) 484 
and (h) show empirical quantile estimates obtained using the 1750 annual maxima. Estimates of 485 

the shape parameter versus block length based on 1750 years of CanRCM4 simulations are 486 
shown by the black line for the four locations A (in (c)), B (in (e)) , C (in (g)) and D (in (i)). 487 

These panels also show estimated shape parameters based on annual maxima from a single 488 
CanRCM4 simulation (in blue) and the 35 ensemble members (in red), with the extension to 489 

longer blocks reflecting the max-stability assumption. Shading indicates 80% confidence 490 

intervals obtained by bootstrapping. 491 
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 493 

Figure 5. Maps of the relative bias in % for return levels estimated using a GEV distribution 494 

fitted samples of 1750 annual maxima. 495 
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Relative bias in estimating long period return levels based on GEV 
fit to 1750 annual maxima of 1-hour precipitation accumulations 



Photo: F. Zwiers 

Growing season temperature variability 



Early growing season temperature variability 
• Early growing season temperature variability (Zhang, et al, in prep) 

• CESM and CanESM2 large ensembles 

• Basic finding is that as the start of the growing season advances to 
earlier dates, temperature variability during the early part of the 
growing season increases, leading to increased frost risk 

• The explanation is that with warming, there is increased overlap 
between the early part of the growing season and the period when 
extreme cold surges are likely to occur (which advances more slowly). 
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Fraser River flow regimes 



Fraser River flow regimes and flooding 
• Islam et al, 2019, doi:10.5194/hess-23-811-2019 

• Curry et al, 2019, doi: 10.1029/2018GL080720  

20 

Simulated annual peak flow at Hope 

https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://www.hydrol-earth-syst-sci.net/23/811/2019/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL080720
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Plans 



Plans 
• Complete PMP work 

• Complete temperature scaling work 

• Continue to probe the core EVA methodology 
• The CanRCM4 large ensemble provides an unprecedented opportunity to gain 

deep insights 

• A critical question is the ”reliable” estimation of very long period return levels 

• Compound wind/precip events 

• Focus the new GWF/CANSSI postdoc on drought 

• Surface wind extremes in CanRCM4 
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Photo: F. Zwiers 

Questions? 
https://www.pacificclimate.org/ 


