

A6: Improving floodplain mapping

Paulin Coulibaly

The beginning

- Early stage of the research !
- HQP familiarizing himself with the prairies
- Connection with the FloodNet Good start !
- What is it that we want to do here?

We want to

- OBJECTIVE: Estimation of flood quantiles & allowing for flood mapping at gauged & <u>ungauged</u> sites in the <u>prairies</u>.
- Because of engineering (design) consideration
 - Evidence-based (stat. Dist. based on observations)

Challenges: Change (climate, land-use,....); ungauged sites

The Research Question

Q: What is the suitable flood estimation framework/method/tool in the prairies?

a) Under climate change

This requires

- Flood modeling;
 - <u>Capturing peak flows well</u> !
 - Preserving the variance !
- Flood-triggering mechanisms
 - Pre-freezing soil moisture and ponding conditions
 - Snow accumulation
 - Snow melting rate and progression
 - Rain over snow
 - Summer rain
 - •
- Synthetic climate scenarios (realizations)
 - Generate datasets

Generated Datasets (Aggregate values

corresponding to flood events)

Rainfall	Snowpack	Melt index	Antecedent moisture	Ponding	Streamflow

The outcome

- Copulas
 - a) Good for design because they are using evidencebased approach
 - b) They provide understanding of flood triggering factors
 - c) Supporting data of continuous hydrographs for detailed hydraulic modeling/flood mapping
 - d) Can be used for predictive purposes
 - e) Can be translated into charts & tables to mimic the existing approach of the SWSA

Building on FloodNet

- MESH (and HBV) modeling in the Qu'Appelle River Basin & other watersheds
 - Adapting runoff generation mechanisms to prairies
 - Improving peak flow prediction

Building on FloodNet

- MESH (and HBV) modeling in the Qu'Appelle River Basin & other watersheds
 - Adapting runoff generation mechanisms to prairies
 - Improving peak flow prediction

- Hydraulic modeling
 - a) HEC-RAS (1D/2D) in the QRB
 - b) Probabilistic flood mapping

Uncertainty in hydraulic model parameters and boundary conditions

- manning's n (model parameters) , and
- inflow hydrographs (boundary conditions)

Flood hydrograph at Moose Jaw Flood hydrograph in Wascana Creek Roughness coefficients

Probabilistic flood mapping

Probability of Inundation

50.6° N

50.58° N

Depth of Inundation

Coefficient of Variation

This requires

- Regionalization analysis
 - a) Construct regional marginal distributions of flows
 - b) Construct regional copulas in "similar" regions
 - c) Use to estimate flood quantiles at ungauged basins

Again building on a lot of univariate regional analysis done within FloodNet, and site classification of rain-driven, snow-driven, Etc.

The Magnitude of Work

- A lot of hydrologic modeling;
- Climate model simulations;
- Analysis of flood triggering factors
- Extensive and advanced statistical analysis
- Hydraulic modeling ??

Milestones

- December 2018
 - Watershed models developed for 2 watersheds
- December 2019
 - Climate realizations and Generation of datasets
 - Analysis of flood-triggering mechanisms
- December 2020
 - Statistical analysis & construction of copulas at the sites
 - Proof of concept

Final Thoughts

- Beyond 2020
 - Generating datasets at several sites
 - Regionalization of copulas
 - Estimation of flood quantiles at ungauged basins
 - Hydraulic modeling
 - Probabilistic flood mapping & Risk assessment