Canadian Hydrological Model: Status and Prospects

C. Marsh¹, V. Vionnet¹, K. Green², R. Spiteri^{2,1}, D. Costa¹, H. Wheater¹, J. Pomeroy¹

1 Centre for Hydrology and Global Institute for Water Security, University of Saskatchewan, Montréal, Canmore & Saskatoon, Canada 2 Numerical Simulation Lab, University of Saskatchewan, Saskatoon, Canada

Canadian Hydrological Model (CHM)

- Unstructured triangular mesh depending on topography and vegetation complexity
- Flexible structure to test multiple hypothesis, assessment of uncerta
- Incorporation of existing code
- Algorithms for downscaling meteorological data (e.g., from NV
- Accounts for:
 - slope and aspect; terrain shad
 - gravitational redistribution
 - blowing snow (redistribution sublimation)
 - snow/canopy interactions

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-109 Manuscript under review for journal Geosci. Model Dev. Discussion started: 26 April 2019 © Author(s) 2019. CC BY 4.0 License.

The Canadian Hydrological Model (CHM): A multi-scale, multiextent, variable-complexity hydrological model -- Design and overview

Christopher B. Marsh1,2

5 John W. Pomeroy^{1,2}

Howard S. Wheater^{2,1}

Affiliations: ¹ Centre for Hydrology, University of Saskatchewan, Canada.; ² Global Institute for Water Security, University of Saskatchewan, Canada

Modular process representation

- Modules as complex or simple as needed
 - Mixing empirical and physics-based representations
- Maximizes parallelism
- Incorporation of existing code a priority
- Can call anything that has a C-interface:
 - e.g., Julia, Fortran, R*, Python*, Matlab*

*has implications for parallelism

Process representations

- Air temperature
 - Linear lapse rates (measured, seasonal, constant, neutral stability) (Kunkel, 1989, Dodson et al., 1997)
- Relative humidity
 - Linear lapse rates (measured, seasonal, constant) (Kunkel, 1989)
- Horizontal wind
 - Topographic curvature (Liston, et al., 2006)
 - Mason-Sykes (Mason and Sykes, 1979)
 - WindNinja (Wagenbrenner, et al., 2016)
- Precipitation
 - Elevation based lapse (Thornton, 1997)
- Solar radiation
 - Terrain shadows (Marsh et al., 2011, Dozier and Frew, 1990)
 - Clear sky transmittance (Burridge, 1975)
 - Transmittance from observations
 - Cloud fraction estimates (Walcek, 1994)
- Longwave
 - T, RH based (Sicart et al., 2006)
 - Constant (Marty et al., 2002)

- Canopy
 - Open/forest (exp/log) (Pomeroy et al., 1998; Ellis et al., 2010)
- Snowpack
 - 2-layer Snobal (Marks et al, 1999)
 - Multi-layer Snowpack (Lehning et al., 1999)
 - Various albedo e.g., CLASS (Verseghy 1991)
- Soil

٠

- Frozen soil infiltration (Gray et al., 2001)
- Precipitation Phase
 - Linear
 - Psychometric (Harder and Pomeroy, 2013)
 - Threshold
- Mass redistribution
 - PBSM3D (Marsh, et al. 2019)
 - Slowslide (Bernhardt, et al. 2012)
- Hydrodynamics
 - FLUXOS (In development)

Mesh generation

- *Mesher* generates the unstructured mesh
 - Reproducible
 - Numerical guarantees on error introduced
 - Handles geospatial conversions and processing
- Mesh generation allows assigning raster values to triangles

Jupy1	ter process (autosaved)	ا
ile Edit	View Insert Cell Kernel Help // Python	20
+ 30	(2) (5) A V H E C Code 8 III CellToolbar	
	This takes an input dem and creates a subset of it sufficient for the Mason Sykes (MS) routine in DBSM. This subset needs to be a square extent of size power of 2.	
	Change compiler to be your compiler of choice (e.g., gfortran)	
	After creating the DEM and a zero-height vegetation DSM, this creates the required include file for the DBSM code and builds a correct copy of DBSM.	
	On output, this creates 8 files named Windspeed_Normalized_1.asc to Windspeed_Normalized_8.asc	
	The _[1-8] corresponds to the dd values in DBSM. These asc files can be used to parameterize CHM for the MS_wind model.	
	parameter (line = (MS1'; (line 'Workspeel, Normalized, Lance' Instel's MS2'; (line 'Workspeek, Normalized, Lanc' (Instel's MS2'); (line'Workspeek, Normalized, Lanc' (instel's mere), MS4'; (line 'Workspeek, Normalized, Lanc', instel's Timary), MS1'; (line'Workspeek, Normalized, Lanc', (instel's mere), MS4'; (line' Workspeek, Normalized, Lanc', instel's Timary), MS1'; (line'Workspeek, Normalized, Lanc', instell's mere), MS4'; (line' Workspeek, Normalized, Lanc', instell's mare), J	
In []:	<pre>pet_protect()segic("segic(lb inline") import suggers import statypes as pd import statypes(lb,synlor as pl import statype</pre>	
In [7])	<pre>def med.column.to.20(f(2)and,nedmp); df = pd:read_vert(sist.defullister ='\t'_t'_basder="toos.emgines" pythom') df = pd.statFrame(df(0),values.reaksge(dsdy,dsdy)) returns df</pre>	
In [8]:	<pre>dms = 'Portress_2s_stDL.if' //// //// /// /// /// // // // // // /</pre>	

//figure out which lookup map we need int d = int(theta*180.0/M_PI/45.); if (d == 0) d = 8;

double speedup = face->get_parameter("MS"+std::to_string(d)); W = W*speedup;

Parameterization via mesher

Usage in model

Surface parameters can change during run time

Interpolation & downscaling

- Spatial interpolation
 - a) Thin plate spline with tension
 - b) Inverse Distance Weighting (IDW)
 - c) Nearest neighbour
- Control number of surrounding stations used in interpolation
- Various lapse-rate approaches for downscaling
- NetCDF support for use with NWP outputs

Downscaling 2.5km GEM temperature output For the Yukon

Multiscale blowing snow model (PBSM3D)

- Blowing snow a key component of mass heterogeneity in cold regions
 - "Snow drift resolving scales"
 - 1 m to 150 m resolution
- Up-scaled formulation of the Prairie Blowing Snow Model (PBSM) to a variable resolution mesh
- Includes non-steady fetch effects
- Uses windspeed maps to account for terrain impacts
 - Less computationally expensive than CFD model
 - Better results than terraincurvature methods
- Applicable to large extents

Uncorrected wind field

1500

PBSM3D at Granger Basin, Wolf Creek

- Inclusion of blowing snow:
 - 13% improvement in RMSE
 - 73% decrease in MBE
 - Increased CV from 0.04 to 0.4
 - Inline with observed values
- Interannual variability in drift formation was captured
- Reduced:
 - # elements by 62%
 - runtime by 44%

Application to Kananaskis, Canadian Rockies

Vionnet, et al., in prep (2019)

Influence of snow redistribution

7 km

CHM output are interpolated on regular 50-m grid

27 April 2018

No Snow Redistribution

Snow Redistribution

Influence of elevation

Lidar-derived 50-m map of snow depth (SD) (non-forested areas)

Decrease in mean snow depth at high elevation

No-Redistribution:

- Does not capture the spatial variability of SD
- No decrease of SD at high-elevation

Redistribution captures:

- increased SD variability due to snowdrifts and avalanche deposits
- Snow transport from high-elevation

Hydrodynamics

- Couple CHM with 2D hydrodynamic code
 FLUXOS (dynamic wave solver)
- Use for snowmelt runoff and nutrient export dynamics
- Challenges:
 - Couple unstructured mesh with internal structured mesh of FLUXOS
 - Migrate FLUXOS to unstructured mesh

High performance computing developments

Multiple compute nodes via MPI

• Currently scaling to 3200 CPUs

Mesh reordering

- Ensures triangles near to each other are on same node
- Improves linear algebra solution time
- Decreases inter-node communications

In progress

- Distributed mesh
- Inter-face communications
- Global linear algebra solver

- CHM mesh with a 200 m triangle size near ridges
- 1.3 million km²
- Snow accumulation during a 4-day storm in Jan.
 2018
- Atmospheric forcing: HRDPS 2.5 km

CHM over Western Canada

SnowCast

- Daily snowpack forecast
 - +2 and +6 day
 - downscaling of GEM 2.5 km output
- Domain is the Bow Valley near Banff, Alberta
- Provides estimate of current snow depth, density, SWE in the Canadian Rockies
- Potential to provide initial conditions for flood forecast model (assimilation)
- <u>http://www.snowcast.ca/</u>

Next steps...

- Evapotranspiration, wetlands, soils, groundwater
- Routing
- Snowdrift resolving simulation over Canadian Cordillera
- Sub-grid variability
- Warranted model complexity across large extents
 - a) E.g., use prairie specific models in the prairies
- SnowCast
 - Enable blowing snow
 - Improve visualization
 - Data access

Conclusions

- CHM allows for efficient multi-scale process representation
- Blowing snow and avalanching required for correct spatial and temporal variability in snow mass
- Developments:
 - HPC work has enabled large-extent application at nearly snow-drift resolving scales
 - Large extent SWE simulations for 1.3M km²
- Next steps:
 - Snow-drift resolving simulation over Western Canadian Cordillera
 - Inclusion of more hydrological processes (e.g., evapotranspiration, routing, soils, FLUXOS)
 - Ongoing code optimizations to support MPI changes to enable larger extents

Variability and heterogeneity

- Cold regions have substantial spatial and temporal variability in mass and energy
- Results in heterogeneity in runoff generation
 - Water stored as **snow in the mountains** represents a **key component** of the **hydrological cycle** of many **river basins** in **Canada**
 - Flood forecasting, water management
 - Prairie snowmelt runoff nutrient transport
- Heterogeneity motivates the use of distributed models and physically-based models
- However, traditional approaches may:
 - over-represent the landscape
 - increase computational costs
 - increase required number of parameters
- Or, lumped approximations may fail

5-m 3D map of snow depth derived from airborne Lidar over the Kananaskis region (Alberta) on 27 April 2018

Prairie surface variability (Phillip Harder)

Mesher

https://github.com/Chrismarsh/mesher

