LOOKING INTO THE PAST?

e.g., <u>1687-1691</u> proxy for **Precipitation Anomaly** Headwaters of SaskRB

TYDROLOGICAL PROCESSES Aydrol, Process, (2016) Published online in Wiley Online Library wileyonlinelibrary.com) DOI: 10.1002/hyp.10754 Time scale effect and uncertainty in reconstruction of paleohydrology Saman Razavi, 1,2,3* Amin Elshorbagy, 1,2 Howard Wheater 1,2,3 and David Sauchyn4

Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada ⁴ Tree-Ring Lab, Prairie Adaptation Research Collaborative, University of Regina, Regina, Saskatchewan, Canada

Saman Razavi a,*. Richard Vogel b

Earth System Science Data

The data publishing journal

https://doi.org/10.5194/essd-2019-57

© Author(s) 2019. This work is distributed under

Editorial board

Articles

About

Special issues

Subscribe to alerts

Peer review

Living data process

For authors

For reviewers

Imprint

Data protection

User ID

the Creative Commons Attribution 4.0 License.

Data description paper

Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada

Andrew R. Slaughter and Saman Razavi

Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Received: 29 Mar 2019 - Accepted for review: 07 May 2019 - Discussion started: 17 May 2019

Abstract. The assumption of stationarity in water resources no longer holds, particularly within the context of future climate change. Plausible scenarios of flows that fluctuate outside the envelope of variability of the gauging data are required to assess the robustness of water resources systems to future conditions. This study presents a novel method of generating weekly-time-step flows based on tree-ring chronology data. Specifically, this method addresses two long-standing challenges with paleo-reconstruction: (1) the typically limited predictive power of tree-ring data at the annual and sub-annual scale, and (2) the inflated short-term persistence in tree-ring time series and improper use of prewhitening. Unlike the conventional approach, this method establishes relationships between tree-ring chronologies

Metrics

17 May 2019

Discussion

This discussion paper is a preprint. It

is a manuscript under review for the

journal Earth System Science Data

Abstract

Assets

Review status

(ESSD).

Search articles

Search

Author

Special issue

Water, ecosystem, cryosphere, and climate data from the interior...

Download

▼ Q

Short summary

Water management faces

HIGHLIGHTS

- A novel method of generating weekly-time-step flows based on tree-ring chronology data.
- Addressed two long-standing challenges with paleo-reconstruction:
 - (1) the typically limited predictive power of tree-ring data at the annual and subannual scale, and
 - (2) the inflated short-term persistence in tree-ring time series and improper use of prewhitening.
- An ensemble approach to represent the uncertainty inherent in the statistical relationships and disaggregation method.
- Properly preserved the statistical properties of reference flows, short- to longterm persistence and the structure of variability across time scales.