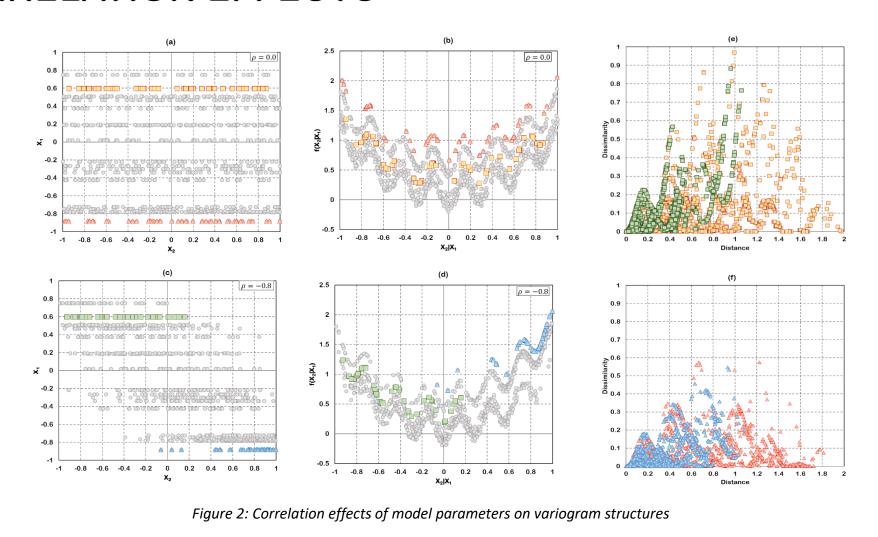

VARS-TOOL

Advances in handling correlation effects between model parameters

¹ - Postdoctoral Fellow, Email: nhu.do@usask.ca, ² - Associate Professor, Email: saman.razavi@usask.ca.

KEY POINTS


- Extend the theory of VARS to handle non-uniform and correlated inputs
- Develop gSTAR-VARS to sample any joint and conditional probability distributions
- Show properly accounting for correlation effects, which are often ignored, is essential in sensitivity analysis.

VARS FRAMEWORK

$$\gamma(h_{x_i}) = \frac{1}{2} E\left\{ \left[f(x_i + h_{x_i} | x_{\sim i}, x_{\sim i}) - f(x_i | x_{\sim i}, x_{\sim i}) \right]^2 \right\}$$

$$\gamma(h_{x_i}) = \frac{1}{2N(h_{x_i})} \sum \left[f(x_i + h_{x_i} | x_{\sim i}, x_{\sim i}) - f(x_i | x_{\sim i}, x_{\sim i}) \right]^2$$

CORRELATION EFFECTS

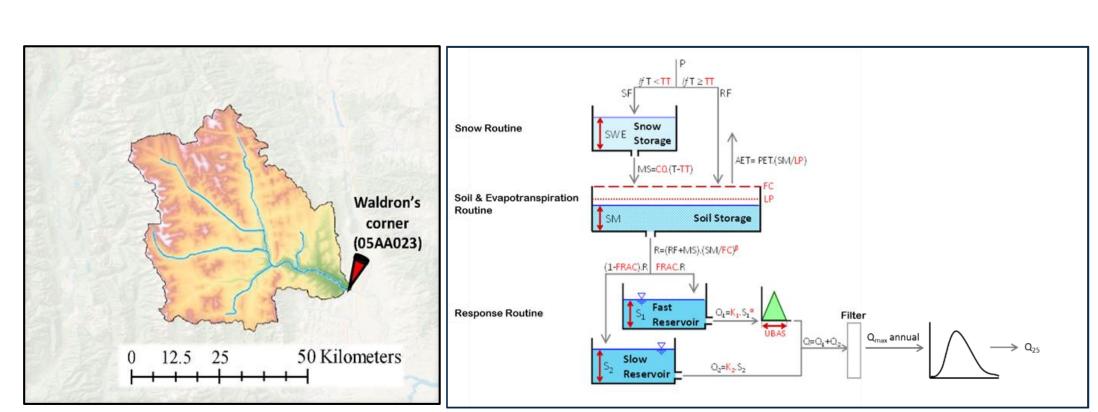
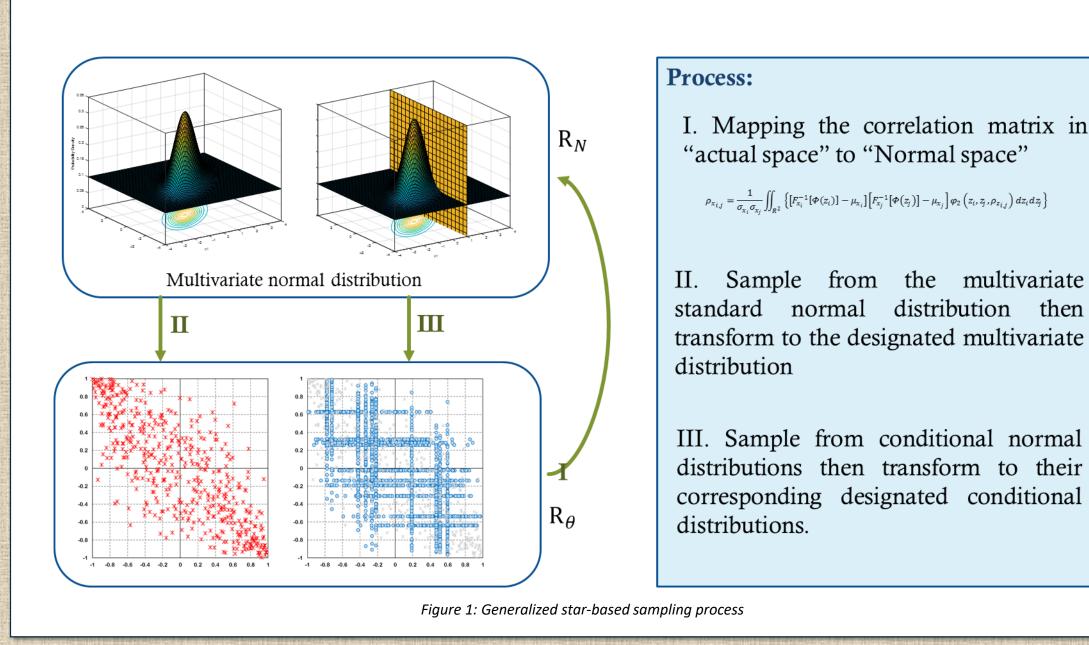


Figure 4: Oldman River Watershed and the HBV-SASK model for flood frequency analysis


Table 2: Projected temperature and precipitation change from 2016-2035 over Alberta, Canada based on three RCPs

Season	Change in temperature (°C)			Change in precipitation (%)		
	RCP2.6	RCP4.5	RCP8.5	RCP2.6	RCP4.5	RCP8.5
Winter (Dec-Feb)	1.2	1.2	1.8	3.1	5.9	4.3
Summer (Jun-Aug	1.1	1.1	1.4	3.3	2.3	1.7

Table 5: Histograms of the inferred parameter values a posteriori by the MCMC algorithm

GENERALIZED STAR-BASED SAMPLING PROCESS

APPLICATION

Identify Controlling factors of flood estimates under future climate changes

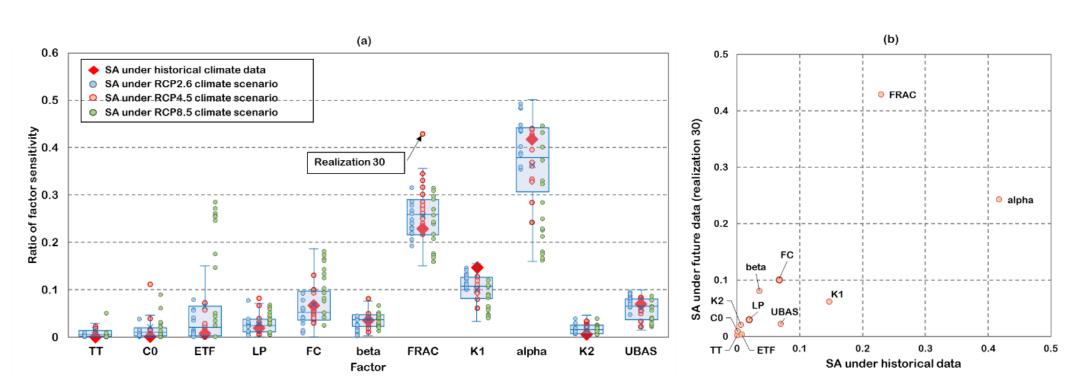


Figure 3: (a) Sensitivity analysis of HBV-SASK model under plausible future scenarios and (b) Comparison between sensitivity analysis using historical climate data and sensitivity analysis using a specific future realization (future scenario 30)

Table 1: HBV-SASK model parameters and their initial ranges

No.	Parameters	Name	Lower Limit	Upper Limit			
I. Snow routine							
1	TT	Air temperature threshold in °C for melting/freezing and separating rain and snow.	-4	4			
2	C0	Base melt factor, in mm/°C per day.	0	10			
II. Soil and evapotranspiration routine							
3	ETF	Temperature anomaly correction in 1/°C of potential evapotranspiration.	0	1			
4	LP	Limit for daily potential evapotranspiration as a multiplier to the field capacity of soil (FC)	0	1			
5	FC	Field capacity of soil, in mm. The maximum amount of water that the soil can retain.	50	500			
6	β	Shape parameter (exponent) for soil release equation	1	3			
III. Response routine							
7	FRAC	Fraction of soil release entering fast reservoir.	0.1	0.9			
8	K1	Fast reservoir coefficient, which determines proportion of the storage being released per day.	0.05	1			
9	а	Shape parameter (exponent) for fast reservoir equation.	1	3			
10	K2	Slow reservoir coefficient, which determines proportion of the storage being released per day.	0	0.05			
11	UBAS	Base of unit hydrograph for watershed routing in day; default is 1 for small watersheds.	1	3			

CONCLUSIONS

A novel approach for the GSA of models with correlated, non-uniformly distributed variables is introduced.

The proposed approach is an extension of the theory of Variogram Analysis of Response Surfaces (VARS).

Different sensitivity indices, including the integrated variograms $(IVARS_{10}, IVARS_{30}, and IVARS_{50})$ and the variance-based total-order effects (VARS-TO), obtained from the proposed method can provide a comprehensive characterization of sensitivity across the full spectrum of perturbation scales in the factor space.