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Abstract

This study investigated the observed characteristics of extreme precipitation over western Canada using multiple statistical techniques and explores the impacts of climate change on future extreme precipitation by comparing the Pseudo Global Warming (PGW)
projection against retrospective simulation (CTL) generated using the Weather Research Forecasting (WRF) model at convection permitting scale (model’'s horizontal grid spacing = 4km). Preliminary analysis of the observed station data shows a heterogeneous
pattern of precipitation change over western Canada. The PGW simulations show increased total precipitation compared to CTL simulations. For the dynamical model study, the Weather Research and Forecasting (WRF) model simulates a high intensity 50 and 100-
year precipitation events for current climate conditions than by the end of this century.

Background Data and Methodology Preliminary Results and Discussion

Canada Is warming at twice the global average. Data:

Increased atmospheric moisture due to global warming 1. WRF-CTL simulations were compared against WRF-PGW simulations
may Increase the likelihood of extreme precipitation
(Trenberth et al., 2003) which is highly variable both In

 Prairie Precipitation shows high spatial and temporal variability
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1 Magnitude of domain-averaged daily maximum precipitation was higher in case of WRF-PGW than WRF-CTL

space and time. Many extreme precipitation events are Statistical Analyses: | |

caused by mesoscale convective systems (MCSs). In 1. Non-parametric Mann-Kendall test and Theil-Sen’s slope analyses for trend and rate analyses simulations

southern Canada, Alberta and South Saskatchewan, 2. Generalized Extreme Value (GEV) distribution analysis for return period calculation Q The magnitude of 50 and 100-year return period precipitation is higher in WRF-CTL than WRF-PGW simulation
MCSs are projected to increase under pseudo global | - - | y | . . . L o

warming projection (Li et al., 2017: Liu et al., 2017; Prein The sampling distribution of the largest of m values converges to the GEV distribution, with the probability density d Under PGW scenario, magnitude of 50- and 100-year return period precipitation show less sensitivity

et al., 2017). Intensive agricultural activities over the function (paf): | | |

Canadian Prairies may augment precipitation intensity f(x)=1/a [1-(x (x-§))/a]*(-1+1/k) exp{-[1-(k (x-§))/a]*(1/K) } 1-k(x-§)/a>0 g e o - Feom (T o T

locally (Betts et al., 2013). It is yet to be understood Where, a, , and k are the location (or shift), scale, and shape parameters, respectively. When k approaches to [T S = Siapie - T E = S e

whether summer convection will enhance or suppress zero, the GEV distribution converges to Gumbel distribution whose PDF is given by:
over Prairies under warmer and moister climatic fx)=1/a exp{-exp[-((x-€))/a]-((x-E))/a}

conditions from mid-to-late 21st century (Stewart et al., -
2019). The CDF is given by:
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The effect of climate change on extreme precipitation J J
events in the Canadian Prairies remain uncertain. T= 1/[1-F(x)] Samenten seny lin (WRF-CT1) Eamenten stony Pl (WRF- o)
Therefore, our goal is to better understand the spatio- = i Fig. 4: Comparison of
temporal variability of extreme precipitation events on return period
the Canadian Prairies under present and future climate Total Precinitation (mm): SWIFT CURRENT (SK) Fotal Preciniation (mm): Regina precipitation at
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