Theme B2: Ecological flow needs

Tim Jardine (U of S) and Daniel Peters (ECCC)

Project team members Wendy Monk (ECCC), Donald Baird (ECCC/UNB), Allen Curry (UNB), Helen Baulch (U of S)

The definition

 Environmental flows describe the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems

The old way of doing things

- Look-up tables (e.g. Tennant)
 - % of mean flow
 - Minimum flow requirements
 - 10% poor
 - 30% moderate
 - 60% excellent
 - Focus on fish in channel

New methods use holistic approaches

Aquatic biodiversity and natural flow regimes

Bunn and Arthington 2002

ELOHA: Ecological limits of hydrological alteration

Scientific process

ELOHA steps 1-3

Poff et al. 2010

Objectives

- Develop flow-ecology relationships
 - Species of special concern

- Mechanistic or process-based
- Expert knowledge
- Develop rule curves for those relationships

- Take outputs from water resource management models (Theme B1) to assess ecological implications
 - Current performance with existing management

Objectives

Status quo

Raise levees and

- Assess tradeoffs (future scenarios)
 - Future "acceptable" performance
 - Relative to economic and social objectives (Theme B3)

Change in precipation variability (CV)

Environmental flows" – The quantity, quality and timing of water flows required to sustain freshwater & estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems. Brisbane Declaration 2007 – global call to action

Cold-regions Hydrological Indicators of Change in Ecological Flow Assessments

Peters et al. 2014 Hydrological Sciences

- Cold-regions aquatic environments influenced by the timing and magnitude of the annual spring freshet and summer high flow resulting from snowmelt and rainfall, which generally follows an extended low-flow period over the winter months influenced by an ice cover

ECCC developed suite of hydrological indicators specific for cold regions

Connectivity to Floodplain

 EFN development and implications for downstream floodplain deltaic ecosystems – connectivity to wetlands

Example of Extreme Conditions: Peace-Athabasca Delta

Take Away Messages

- EFN approaches should consider the effects of ice on riverine and floodplain/deltaic environments
 - Existing CHIC tools easily incorporated into hydrological models
- EFN guidelines consider the impacts of climate variability/ change on the timing and magnitude of flows/water levels.
- Assess feasibility of water management approaches to occasionally enhance/restore flow/level conditions to maintain ecosystems
 - Caution should be exercised when using hydrological models for development of EFN guidelines
 - need to assess model ability to replicate important hydrological indicators (timing and magnitude)
 - eg. Shrestha et al. 2014 Hydrol. Proc. VIC Model Fraser River Basin