



## The hydrological forecasting platform GEM-Hydro within the GWF project

V. Vionnet<sup>1,2</sup>, V. Fortin<sup>2</sup> and M. Dimitrijevic<sup>2</sup>

<sup>1</sup>Centre for Hydrology, University of Saskatchewan, Canada <sup>2</sup>Meteorological Research Division, Environment and Climate Change Canada





### **Outline**

 GEM-Hydro: a forecasting system based on coupled numerical models for water cycle prediction

Example: Great Lakes and St. Lawrence watershed

GEM-Hydro for GWF

## **GEM NWP system**

Global 25-km
 240-h forecasting system

North American 10-km
 48-h forecasting system

Canadian 2.5-km48-h forecasting system





# **GEM-based** surface prediction system







# **GEM-based hydrological prediction system**



Gaborit et al. (2017, HESS, Accepted); Durnford et al. (2017, BAMS, Accepted)

Page 5 – 15 février 2018







# Advantages of using coupled environmental models

#### Accuracy and consistency gains:

- Effects of interactions between the atmosphere and the surface (lakes, land, ...)
- Evaporation and evapotranspiration are the same in the atmosphere, hydrology and lake models

#### Efficiency gains:

- Latency: environmental predictions are available at the same time as the weather forecast
- Robustness: 24/7 support at almost no additional cost
- Maintenance: a single land-surface model to maintain

# Water Cycle Prediction System for the Great Lakes and St. Lawrence

**GEM RDPS (10 km)** atmospheric model





GEM LAM (10 km) atmospheric model (ISBA land-surface scheme)



WATROUTE routing model (1km)







Data assimilation system (EnVAR)



NEMO+CICE (2 km) ocean-ice model over the Great Lakes







## Water Cycle Prediction System for the Great Lakes and St. Lawrence

#### In production since June 2016:

- 2 runs per day
- 3.5 day forecasts







WATROUTE

## **Streamflow analysis cycle** 2017-06-22 06Z - 2017-06-24 06Z



## **Streamflow analysis cycle** 2017-06-22 06Z - 2017-06-26 06Z



## **GEM-Hydro within GWF**

- GEM-Hydro over
  Southern Alberta
- Region strongly impacted by the June 2013 flood
- Many challenges for hydrology including upstream mountainous region







## **Operational configuration**



 1-km grid spacing domain covering South Alberta

### **Operational configuration**



- 1-km grid spacing domain covering South Alberta
- Includes South-Saskatchewan river watershed
- Runs:
  - Coupled: GEM 1km (-> 48h)
  - Offline: Ensemble (REPS) 10->1 km (-> 96h)

### **Experimental configuration**



- 1-km grid spacing domain covering
   South Alberta
- 250-m grid spacing domain covering the Bow river watershed
- Focus on mountain hydrology

### **Experimental configuration**



- 1-km grid spacing domain covering
   South Alberta
- 250-m grid spacing domain covering the Bow river watershed
- Runs:
  - Coupled: GEM 250 m (-> 24h)
  - Offline: GEM 1->0.25 km (-> 48h)

## **Experimental configuration**

## A configuration to tackle major challenges in mountain hydrology:

- Precipitation:
  - Spatial variability and phase change: GEM 1km, 250 m
  - Precipitation analysis in mountainous terrain: CaPA 1km
- Snowpack:
  - Model complexity (single- and multi-layer schemes in SVS)
  - Subgrid spatial variability (coll. Coldwater Lab.)
  - Data assimilation (SWE, SCA, ...)
- 1st test: Rain on Snow Event during the June 2013 flood





