The dynamics of greenhouse

gas transport in Prairie ponds

Lauren Dyck (lauren.dyck@usask.ca), supervisor Dr. Colin Whitfield

Background

- Pothole ponds, also called wetlands or sloughs, were historically not regarded as having value to society. There are millions of these ponds across the prairies.
- Carbon and nitrogen are actively transformed in these ponds. Each pond has the potential to be a source of or sink for greenhouse gases (GHG) in the atmosphere.
- Little is known about the factors that drive differences in biogeochemical cycling between pothole ponds – especially for gas fluxes, which exhibit high spatiotemporal variability.
- Dissolved gas in surface waters can be measured to indicate the intensity of GHG production in pond water and sediments.

Purpose

- To provide enhanced estimates of regional water-atmosphere GHG exchange

from pothole ponds.

Objectives

To (1) quantify spring and summer dissolved GHG saturation levels and (2) identify physicochemical characteristics responsible for controlling CO_2 , CH_4 , and N_2O in these ponds.

Data Collection

Prairie ponds (n = ~150) were surveyed in spring and summer, 2018 and 2019. Sampling included:

- Field observations
- Water and sediment samples
- Dissolved gas concentrations (Figure 1)

Figure 1: Dissolved gas sampling, headspace equilibrium method.

Preliminary Results

In 2019, all ponds sampled were supersaturated in CH₄, the majority of ponds were undersaturated in N₂O, and ponds were close to evenly split for CO₂ Overall, more ponds supersaturated in spring than in summer)

> **Table 1**: Percent of under-saturated, saturated, and super-saturated
> ponds in spring (April/May) and summer (June/July) of 2019.

Date	Gas	Under (%) <95%	Saturated (%) 95–105%	Super (%) >105%
April/May 2019	CO ₂	31	5	64
	CH ₄	0	0	100
	N ₂ O	65	20	15
June/July 2019	CO2	50	1	49
	CH ₄	0	0	100
	N ₂ O	74	5	21

Next Steps

Quantify GHG fluxes from other pathways (methods pictured in Figures 2–4) at select sites for the whole open water season.

Identify the relative roles of vegetative, ebullitive, and diffusive pathways.

Figure 2: Field sampling of gases released from exposed sediment around ponds.

Figure 3: Sampling of GHGs transported through vegetation (cattails).

Figure 4: Automated sensor for measuring gas bubbles released from sediments (ebullition) (Photo R.Helmle).

Significance

- Lack of gas flux measurements across diverse pathways in Prairie ponds limits attempts to describe regional GHG budgets. -This research seeks to fill this gap.
- This research, used alongside knowledge from other disciplines (e.g., biology, economics), can inform water management decisions affecting wetlands or sloughs.