

Rates of Nitrogen Transformations in Prairie Wetlands

Amy Hergott^{*a*}, *Emily Cavaliere*^{*a*}, *Colin Whitfield*^{*a, b*}, and Helen Baulch^{*a, b*}

^a School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK. ; ^b Global Institute for Water Security, Saskatoon, SK.

The Problem:

- \Rightarrow The Prairie Pothole Region (PPR) covers 780,000 km² throughout the Canadian prairies and into the upper-midwest United States, and plays a major role in feeding the growing world population (1)
- \Rightarrow Nitrogen (N) fertilizers are crucial for quality and quantity of crops, especially under stressed climate conditions
- \Rightarrow But, N carried in runoff can have detrimental impacts on water bodies including: surface and subsurface water quality degradation, eutrophication, health hazards, and reduction of

The PPR contains 5 to 60 wetlands per $km^{2}(1)$

Prairie wetlands produce 50-80% of the continents waterfowl (3), but over 71% of wetlands have already been destroyed (1,7)

Reduce, Remove, Recycle:

- \Rightarrow Transformation of N occurs through many biogeochemical processes within wetlands
- \Rightarrow By exploring the rates of N cycling, along with the physical parameters and characteristics that may influence those rates, we can begin to understand what happens to N in wetlands

SASKatchewan

CHemistry

WATer

SASKWATCHE

- \Rightarrow In this study, we quantified the rates of seasonal N uptake by algae and N removal through denitrification across different pond permanence classes
- \Rightarrow By investigating these processes we can begin to answer the

biodiversity (2)

 \Rightarrow Wetlands are biogeochemical hotspots but, their role in N cycling remains largely understudied

fundamental, but complex question: How can we balance food production with the preservation of our ecosystem services?

Denitrification: A) A boxplot displaying denitrification across pond permanence class, with rates reaching 4.27 x 10^{-6} ug N L⁻¹ hr⁻¹ and illustrating a similar, but more diverse denitrification potential in seasonal and semi-permanent wetlands.

B) A scatterplot displaying rate of denitrification across pond conductivity, showing the strong relationship with conductivity and denitrification activity.

increasing with class

GWF GLOBAL WATER FUTURES

Global Institute for

Water Security

importance of shorter-lived wetlands for N reduction.

Conclusion & Next Steps:

 \Rightarrow Both denitrification and algal uptake were found to be higher in seasonal or semi-permanent wetlands. Paradoxically, these wetlands feature a short hydroperiod and are the most

Application

This research can further be used:

School of Environment

and Sustainability

- \Rightarrow For more informed and sustainable decisions made by producers, managers, agencies, and government personnel
- \Rightarrow To guide the prediction of N cycling dynamics in wetlands of different permanence, and provide improved nutrient budgets across the prairies
- \Rightarrow To supply information for future integrative modelling exercises and programs to contribute to a better understanding of wetland biogeochemistry

PRAIRIE WATER GLOBAL WATER FUTURES

threatened by drainage and land modification \Rightarrow These results illuminate the need for further research into wetland N cycling, including exploration into other processes, such as our additional research into DNRA, especially when considering consolidated drainage and related policies \Rightarrow By developing an integrative understanding of a broad suite of processes, we can begin to understand the capacity at which wetland ponds may recycle, release, or retain N and contribute to the resilience of the PPR

References: [1] National Wetlands Working Group (1997), [2] Saunders and Kalff (2001), [3] Batt et al. (1989), [4] Biswas et al. (2012), [5] LaBaugh et al. (2018), [6] Doherty et al. (2013), [7] Montgomery et al. (2018)